Список заданий по ДМ-сем2

Материал из Викиконспекты
Перейти к: навигация, поиск

<wikitex>

Дискретная математика, алгоритмы и структуры данных, 2 семестр

  1. Докажите, что для монеты энтропия максимальна в случае честной монеты
  2. Докажите, что для n исходов энтропия максимальна если они все равновероятны
  3. Зафиксируйте ваш любимый язык программирования. Колмогоровской сложностью $K(x)$ для слова $x$ называется длина минимальной программы, которая выводит слово $x$. Докажите, что колмогоровская сложность не превышает $n H(x) + O(\log n)$, где $n$ - длина строки $x$, $H(x)$ - энтропия случайного источника с распределением соответствующим частотам встречания символов в $x$, константа в $O$, не зависит от слова $x$ (но может зависеть от выбранного языка программирования)
  4. Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c H(x)$
  5. Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
  6. Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
  7. Что можно сказать про $H(A | A)$?
  8. Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
  9. Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке $p$ ($p$ - целое) и каждую секунду переходит равновероятно на 1 влево или вправо. Точка поглощается в точках 0 и $n$ ($n$ целое, больше $p$). Найдите вероятность поглощения в точке 0.
  10. Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке 0 и каждую секунду переходит равновероятно на 1 влево или вправо. Докажите, что математическое ожидание максимума координаты точки за $n$ шагов есть $O(\sqrt{n})$.
  11. Докажите, что математическое ожидание числа экспериментов при симуляции одного распределения другим асимптотически равно отношению энтропий распределений (считайте, что энтропия симулируемого распределения больше).
  12. Пусть $f$ и $g$ - непрерывные возрастающие функции, причем $\lim\limits_{x\to-\infty}f(x)=0$, $\lim\limits_{x\to-\infty}g(x)=0$, $\lim\limits_{x\to+\infty}f(x)=1$, $\lim\limits_{x\to+\infty}g(x)=1$, кроме того считайте, что вы можете вычислять $f(x)$, $g(x)$, $f^{-1}(x)$ и $g^{-1}(x)$. У вас есть случайная величина с функцией распределения $f(x)$. Как вам получить случайную величину с функцией распределения $g(x)$?
  13. Проанализировать саморасширяющийся массив, если расширение происходит в $A$ раз ($1 < A$)
  14. Проанализировать стек на саморасширяющемся массиве, если при полном заполнении происходит увеличение в 2 раза, а при заполнении менее чем на 1/4 - сужение в 2 раза с помощью метода потеницалов. Потенциал должен зависеть только от текущего состояния стека (размера выделенного массива и числа заполненных элементов) и не должен зависеть от истории операций.
  15. Проанализировать стек на саморасширяющемся массиве, если при полном заполнении происходит увеличение в A раз, а при заполнении менее чем на B - сужение в C раза
  16. Разработать вектор с добавлением/удалением с истинной стоимостью всех операций $O(\log n)$.
  17. Задан односвязный список, каждый элемент знает следующий после себя. При этом возможно, что на самом деле список зацикливается (один из элементов ссылается как на следующий на элемент, который уже встречался в списке перед ним). Требуется проверить, зацикливается ли заданный односвязный список за $O(n)$ с $O(1)$ дополнительной памяти
  18. В массиве есть элемент, который встречается хотя бы $n/2$ раз. Требуется найти его за $O(n)$ с $O(1)$ дополнительной памяти
  19. Использования памяти без инициализации. Задан массив $a[1..n]$. Требуется поддержать две операции: $set(i, x)$ и $get(i)$. Операция $set$ должна присваивать $i$-му элементу массива значение $x$. Операция $get$ должна возвращать последнее присвоенное $i$-му элементу значение, либо 0, если присвоения не было. При этом исходно массив заполнен произвольными данными. Разрешается завести $O(1)$ дополнительных массивов (также заполненных произвольным мусором) и реализовать все операции за истинное $O(1)$.
  20. Можно ли просимулировать два стека на одной очереди?
  21. Счетчик Кнута. Рассмотрим массив $a[0..n-1]$. Будем считать, что в каждом элементе может быть число 0, 1 или 2 и массив представляет собой число $a[0]+a[1]\cdot 2+a[2]\cdot 4 + \ldots + a[n-1]\cdot2^{n-1}$. Требуется реализовать операцию добавления $2^k$ к числу, представленному в массиве за истинное $O(1)$ и $O(n)$ дополнительной памяти.
  22. Реализуйте менеджер памяти, позволяющий выделять и возвращать блоки одинакого размера за $O(1)$ времени и $O(1)$ дополнительной памяти
  23. В $d$-куче выполняется $m$ операций decreaseKey и $n$ операций extractMin. Какое оптимальное асимптотически $d$ следует выбрать?
  24. В $d$-куче выполняется $m$ операций decreaseKey и $n$ операций extractMin. Время выполнения decreaseKey - $C_1 \log n$, а extractMin - $C_2 d \log n$. Какое $d$ следует выбрать?
  25. Как найти $s$-й по величине элемент в куче при малых $s$?
  26. Приведите алгоритм построения кучи из $n$ заданных элементов за $O(n)$
  27. На базе кучи разработайте алгоритм сортировки за $O(n \log n)$ c $O(1)$ дополнительной памяти
  28. Левосторонние кучи. Будем называть двоичное дерево левосторонней кучей, если в нем выполнены следующие условия. 1) На элементах выполнен порядок кучи. 2) Будем называть отсутствующего ребенка "свободной позицией". Обозначим как $d(u)$ минимальное расстояние от вершины $u$ до свободной позиции в ее поддереве. У любой вершины $u$ с левым ребенком $L(u)$ и правым ребенком $R(u)$ должно быть выполнено $d(R(u)) \le d(L(u))$. Докажите, что для любой вершины $d(u) \le \log_2 n$. Как найти свободную позицию в левосторонней куче за $O(\log n)$?
  29. Предложите реализацию операции merge для левосторонних куч.
  30. Предложите реализацию операций insert, extractMin для левостронних куч.
  31. Предложите реализацию операций decreaseKey для левостронних куч.
  32. Как построить левостороннюю кучу из $n$ элементов за $O(n)$?
  33. Пусть подряд выполняется $n$ операций insert в пустую биномиальную кучу. Какое среднее время операции?
  34. Как можно модифицировать биномиальную кучу, чтобы insert выполнялось за истиное $O(1)$, а амортизированная стоимость остальных операций не поменялась?
  35. Тонкие кучи. Будем называть дерево "тонким", если оно может быть получено из биномиального удалением у некоторых вершин ребенка максимального ранга. Тонкой кучей называется коллекция тонких деревьев. Операции insert, extractMin и merge выполняются в тонкой куче также, как в куче Фибоначчи. Разработайте операцию decreaseKey для тонкой кучи. Докажите, что амортизированное время выполнения есть $O(1)$ (используйте потенциал $2M + T$, где $M$ - число вершин, у которых удалили ребенка)
  36. Тонкие кучи. Докажите, что операция decreaseKey в тонкой куче из предыдущего задания выполняется за истиные $O(\log n)$
  37. Ускорение extractMin. Докажите, что в фибоначчиевой или тонкой куче можно добиться истинного $O(\log n)$ на extractMin, если обрабатывать корневой список, сливая деревья разных рангов, как при extractMin каждый раз, когда в корневом списке становится хотя бы $2\log n$ элементов.
  38. Продемонстрируйте последовательность операций с фибоначчиевой кучей, при выполнении которой заключительная операция decreaseKey выполняется за истиное $\Omega(n)$
  39. Докажите оценку $O(\log n)$ для реализации СНМ со сжатием путей, но когда второе дерево всегда подвешивается на первое (а не обязательно меньшее на большее)
  40. Докажите оценку $O(\log^* n)$ для СНМ, если вместо рангов используется число вершин в поддереве (меньшее дерево подвешивается на большее)
  41. СНМ на списках с ранговой эвристикой. Будем хранить каждой множество в СНМ как список его элементов, каждый элемент знает голову, голова знает хвост. Тогда объедиенение двух списков происходит за время пропорциональное длине одного из них. Докажите, что если каждый раз добавлять меньший список к большему, суммарное время работы всех операций Union будет $O(n \log n)$.
  42. Решите задачу: найти во взвешеном дереве минимальный по весу путь, состоящий ровно из $k ребер
  43. Пусть в реализации СНМ с помощью леса корневых деревьев мы при объединении двух деревьев делаем корнем случайную из двух вершин. Сжатие путей не проводится. Докажите, что в среднем время работы get будет $O(\log n)$.

</wikitex>