Редактирование: Список заданий по ДМ 2к 2018 весна
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 101: | Строка 101: | ||
# Докажите, что действительное число вычислимо тогда и только тогда, когда оно перечислимо снизу и сверху. | # Докажите, что действительное число вычислимо тогда и только тогда, когда оно перечислимо снизу и сверху. | ||
# Покажите, что следующие три свойства множества $X$ равносильны: (1) $X$ можно представить в виде $A \setminus B,$ где $A$ — перечислимое множество, а $B$ — его перечислимое подмножество; (2) $X$ можно представить в виде $A \setminus B$, где $A$ и $B$ — перечислимые множества; (3) $X$ можно представить в виде симметрической разности двух перечислимых множеств. | # Покажите, что следующие три свойства множества $X$ равносильны: (1) $X$ можно представить в виде $A \setminus B,$ где $A$ — перечислимое множество, а $B$ — его перечислимое подмножество; (2) $X$ можно представить в виде $A \setminus B$, где $A$ и $B$ — перечислимые множества; (3) $X$ можно представить в виде симметрической разности двух перечислимых множеств. | ||
− | # Покажите, что множество $X$ можно представить в виде $A\setminus (B \setminus C)$, где $A \ | + | # Покажите, что множество $X$ можно представить в виде $A\setminus (B \setminus C)$, где $A \superset B \superset C$ — перечислимые множества, если и только если его можно представить в виде симметрической разности (суммы по модулю 2) трёх перечислимых множеств. |
# Докажите, что множество $\langle p \rangle$ программ, останавливающихся на своём собсвтенном исходном коде, перечислимо, но не разрешимо. | # Докажите, что множество $\langle p \rangle$ программ, останавливающихся на своём собсвтенном исходном коде, перечислимо, но не разрешимо. | ||
# Некоторое множество $S$ натуральных чисел разрешимо. Разложим все числа из $S$ на простые множители и составим множество $D$ всех простых чисел, встречающихся в этих разложениях. Можно ли утверждать, что множество $D$ перечислимо? | # Некоторое множество $S$ натуральных чисел разрешимо. Разложим все числа из $S$ на простые множители и составим множество $D$ всех простых чисел, встречающихся в этих разложениях. Можно ли утверждать, что множество $D$ перечислимо? |