Редактирование: Список заданий по ДМ 2к 2019 весна

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 34: Строка 34:
 
# Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$.
 
# Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$.
 
# Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$ и не заходящих в отрицательную полупрямую.
 
# Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$ и не заходящих в отрицательную полупрямую.
# <s> Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0 = 2$, $a_n = a_{n-1}^2$. </s>
+
# Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0 = 2$, $a_n = a_{n-1}^2$.
# <s> Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0 = 2$, $a_n = a_{n-1}^3$. </s>
+
# Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0 = 2$, $a_n = a_{n-1}^3$.
# <s> Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0=a_1= 2$, $a_n = a_{n-1}\cdot a_{n - 2}$. </s>
+
# Найдите производящую функцию для последовательности, заданной рекуррентным соотношением $a_0=a_1= 2$, $a_n = a_{n-1}\cdot a_{n - 2}$.
 
# Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 5a_{n-1}-6a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
 
# Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 5a_{n-1}-6a_{n-2}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
 
# Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-2}-a_{n-1}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
 
# Последовательность задана рекуррентным соотношением $a_0=a_1=1$, $a_n = 6a_{n-2}-a_{n-1}$. Оцените асимптотическое поведение $a_n$ при $n\to+\infty$.
Строка 146: Строка 146:
 
# Множество $A$ назвается эффективно бесконечным, если существует всюду определенная вычислимая функция $f$, которая по числу $n$ выводит $n$ различных элементов множества $A$. Докажите, что если множество $A$ содержит бесконечное перечислимое подмножество, то оно эффективно бесконечно.
 
# Множество $A$ назвается эффективно бесконечным, если существует всюду определенная вычислимая функция $f$, которая по числу $n$ выводит $n$ различных элементов множества $A$. Докажите, что если множество $A$ содержит бесконечное перечислимое подмножество, то оно эффективно бесконечно.
 
# Докажите, что если множество $A$ эффективно бесконечно, то оно содержит бесконечное перечислимое подмножество.
 
# Докажите, что если множество $A$ эффективно бесконечно, то оно содержит бесконечное перечислимое подмножество.
# Обозначим как $L(p)$ множество слов, которые допускается программой $p$. Множество $A$ назвается эффективно неперечислимым, если существует всюду определенная вычислимая функция $f$, которая по программе $p$ указывает слово $x$, такое что $x \in L(p) \oplus A$. Докажите, что дополнение к диагонали универсального множества $\overline D$, где $D = \left\{p | \langle p, p\rangle \in U\right\}$, является эффективно неперечислимым.  
+
# Обозначим как $L(p)$ множество слов, которые допускается программой $p$. Множество $A$ назвается эффективно перечислимым, если существует всюду определенная вычислимая функция $f$, которая по программе $p$ указывает слово $x$, такое что $x \in L(p) \oplus A$. Докажите, что дополнение к диагонали универсального множества $\overline D$, где $D = \left\{\langle p, p\rangle\right\}$, является эффективно неперечислимым.  
 
# Докажите, что дополнение к универсальному множеству $\overline U$ является эффективно неперечислимым.
 
# Докажите, что дополнение к универсальному множеству $\overline U$ является эффективно неперечислимым.
 
# Докажите, что любое эффективно неперечислимое множество является эффективно бесконечным.
 
# Докажите, что любое эффективно неперечислимое множество является эффективно бесконечным.
 
# Множество $A$ называется иммунным, если оно бесконечно, но не является эффективно бесконечным. Множество называется простым, если оно перечислимо, а его дополнение иммунно. Докажите, что существует простое множество. Указание: рассмотрите множество $T = \left\{\langle p, x\rangle | p(x) = 1, x > 2p\right\}$.  
 
# Множество $A$ называется иммунным, если оно бесконечно, но не является эффективно бесконечным. Множество называется простым, если оно перечислимо, а его дополнение иммунно. Докажите, что существует простое множество. Указание: рассмотрите множество $T = \left\{\langle p, x\rangle | p(x) = 1, x > 2p\right\}$.  
 
# Докажите, что множество является иммунным тогда и только тогда, когда оно не содержит бесконечных разрешимых подмножеств.
 
# Докажите, что множество является иммунным тогда и только тогда, когда оно не содержит бесконечных разрешимых подмножеств.
# Два перечислимых множества $A$ и $B$, где $A \cap B = \varnothing$ называются неотделимыми, если не сущестует разрешимых множеств $X$ и $Y$, таких что $A \subset X$, $B \subset Y$, $X \cup Y = \varnothing$. Покажите, что существуют неотделимые множества. Указание: рассмотрите множества пар $\langle p, x\rangle$, где $p$ - программа, возвращающая целое число, для некоторого условия.
+
# Два перечислимых множества $A$ и $B$, где $A \cup B = \varnothing$ называются неотделимыми, если не сущестует разрешимых множеств $X$ и $Y$, таких что $A \subset X$, $B \subset Y$, $X \cup Y = \varnothing$. Покажите, что существуют неотделимые множества. Указание: рассмотрите множества пар $\langle p, x\rangle$, где $p$ - программа, возвращающая целое число, для некоторого условия.
 
# Обобщите определение неотделимых множеств на счетное семейство множеств. Докажите, что существует счетное семейство неотделимых множеств.
 
# Обобщите определение неотделимых множеств на счетное семейство множеств. Докажите, что существует счетное семейство неотделимых множеств.
 
# Докажите, что существует вычислимая функция $f$, у которой не существует всюду определенного вычислимого продолжения.
 
# Докажите, что существует вычислимая функция $f$, у которой не существует всюду определенного вычислимого продолжения.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)