Редактирование: Список заданий по ДМ 2к 2019 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 77: Строка 77:
 
# Докажите, что хроматический многочлен дерева равен $t(t-1)^{n - 1}$.
 
# Докажите, что хроматический многочлен дерева равен $t(t-1)^{n - 1}$.
 
# Докажите, что если хроматический многочлен графа равен $t(t-1)^{n - 1}$, то граф является деревом.
 
# Докажите, что если хроматический многочлен графа равен $t(t-1)^{n - 1}$, то граф является деревом.
# Приведите пример двух связных графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
+
# Приведите пример двух графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
 
# Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
 
# Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
 
# Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.  
 
# Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)