Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2019 осень

32 152 байта добавлено, 17:37, 12 ноября 2019
Нет описания правки
# Докажите, что граф с $n$ вершинами и $n + 4$ ребрами содержит два простых цикла, не имеющих общих ребер.
# Докажите, что наименьшее число вершин в кубическом графе, в котором есть мост, равно 10.
# Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
# Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
# Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это $R^*$.
# Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
# Каждое дерево является двудольным графом. А какие деревья являются полными двудольными графами?
# Докажите, что любой кубический граф, который содержит точку сочленения, содержит также мост.
# Докажите, что если $v$ точка сочленения в $G$, то $v$ не точка сочленения в $\overline G$.
# Опишите дерево с кодом Прюфера $(i, i,\ldots , i)$.
# Докажите, что число помеченных неподвешенных деревьев есть $n^{n-2}$, используя теорему Кирхгофа.
# Сколько остовных деревьев у полного двудольного графа $K_{n,m}$?
# Какое максимальное количество попарно непересекающихся остовных деревьев может быть в графе с $n$ вершинами?
# Диаметром графа называют максимальное значение кратчайшего пути между двумя его вершинами. Пусть связный граф $G$ имеет диаметр $d$. Докажите или опровергните, что у $G$ есть остовное дерево с диаметром $d$.
# Рассмотрим множество остовных деревьев связного графа $G$. Построим граф $S_G$, вершинами которого являются остовные деревья $G$, а две вершины $T_1$ и $T_2$ соединены ребром, если дерево $T_2$ можно получить из $T_1$ удалением одного ребра и добавлением другого. Докажите, что $S_G$ является связным.
# Докажите, что две вершины $T_1$ и $T_2$ в $S_G$ соединены ребром тогда и только тогда, когда их объединение содержит ровно один простой цикл.
# Пусть связный граф $G$ содержит $n$ вершин, докажите, что диаметр $S_G$ не превышает $n - 1$.
# Приведите пример связного графа $G$, содержащего $n$ вершин, для которого граф $S_G$ имеет диаметр $n - 1$.
# Докажите, что для любого $1 \le k \le n - 1$ существует связный граф $G$, содержащий $n$ вершин, такой что диаметр $S_G$ равен $n - k$.
# Докажите, что если в связном графе есть реберно простой цикл длины $k$, то у графа есть не менее $k$ остовных деревьев.
# Обобщение формулы Кэли. Пусть дан полный граф из $n$ вершин, и лес в нём, компоненты связности леса имеют размеры $c_1, c_2, \ldots, c_k$. Докажите, что число способов добавить ребра, чтобы получилось дерево, равно $c_1c_2\ldots c_k(c_1+c_2+\ldots+c_k)^{k-2}$.
# Граф называется произвольно вычерчиваемым из вершины $u$, если следующая процедура всегда приводит к эйлеровому циклу: начиная с вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, по которому ранее не проходили. Докажите, что эйлеров граф является произвольно вычерчиваемым из $u$, если любой его простой цикл содержит $u$.
# Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то $u$ имеет максимальную степень в $G$.
# Докажите, что если граф $G$ является произвольно вычерчиваемым из $u$, то либо $u$ - единственная точка сочленения в $G$, либо в $G$ нет точек сочленения.
# Доказать или опровегнуть, что если $G$ содержит порожденный тета-подграф (две вершины, соединенные тремя путями), то $G$ не гамильтонов.
# Обозначим как $G^3$ граф, в котором две вершины соединены, если они соединены в $G$ путем длины не более 3. Докажите, что если $G$ связен, то $G^3$ гамильтонов.
# Граф называется произвольно гамильтоновым, если следующая процедура всегда приводит к гамильтонову циклу: начиная с произвольной вершины $u$, переходим каждый раз по любому исходящему из текущей вершины ребру, другой конец которого мы ранее не посещали, либо обратно в вершину $u$, если непосещенных соседей нет. Опишите все произвольно гамильтоновы графы.
# Теорема "Антихватала". Докажите, что если не выполнено условие теоремы Хватала, то найдется граф с такой степенной последовательностью, не содержащий гамильтонова цикла.
# Докажите, что если сумма степеней любых двух несмежных вершин графа $G$ не меньше $n+1$, то любые две различные вершины $G$ можно соединить гамильтоновым путем.
# Докажите усиленную версию теоремы Редеи-Камеона: в любом сильно связном турнире с $n$ вершинами есть простой цикл любой длины от $3$ до $n$.
# Реберным графом для графа $G$ называется граф $G_E$, множество вершин которого совпадает с множеством ребер исходного графа, два ребра $e$ и $f$ соединены ребром в реберном графе, если у них есть общая инцидентная вершина. Докажите или опровергните, что если $G$ является эйлеровым, то реберный граф является гамильтоновым.
# Докажите или опровергните, что если $G_E$ является гамильтоновым, то граф $G$ является эйлеровым.
# В каком случае ребра реберного графа можно разбить на полные подграфы таким образом, чтобы каждая вершина принадлежала в точности двум из подграфов?
# Выразите число треугольников в реберном графе $G_E$ через число треугольников графа $G$ и набор его степеней.
# В каком случае связный граф $G$ имеет регулярный реберный граф?
# Постройте граф $G$ с $n \ge 4$ вершинами, для которого граф $G_E$ не эйлеров, а граф $(G_E)_E$ эйлеров.
# Докажите, что если $G$ содержит $n \ge 5$ вершин, то если $(G_E)_E$ эйлеров, то и $((G_E)_E)_E$ эйлеров.
# Постройте минимальный по числу вершин реберный граф, в котором нет гамильтонова цикла.
# Докажите, что $G_E$ гамильтонов тогда и только тогда, когда граф $G$ содержит циклический реберно простой путь, содержащий для каждого ребра графа $G$ хотя бы одну вершину, ему инцидентную.
# Обозначим как $\lambda(G)$ минимальное число ребер, которое нужно удалить в графе, чтобы он потерял связность, $\kappa(G)$ - минимальное число вершин, которое нужно удалить в графе, чтобы он потерял связность (для полного графа полагаем $\kappa(G)=n-1$). Докажите, что $\kappa(G) \le \lambda(G) \le \delta(G)$.
# Докажите. что для любых $1 \le \kappa(G) \le \lambda(G) \le \delta(G)$ существует граф $G$ с такими параметрами.
# Докажите, что не существует графов с $\kappa(G) = 3$ и $7$ ребрами.
# Пусть $G$ - полный двудольный граф, за исключением $K_{2,2}$. Докажите $\lambda(G)=\delta(G)$, почем единственный способ удалить $\lambda(G)$ ребер, чтобы граф потерял связность - удалить все ребра, инцидентные одной из вершин.
# Графы $G_1$, содержащий $n_1$ вершин и $m_1$ ребер, и $G_2$, содержащий $n_2$ вершин и $m_2$ ребер, гомеоморфны. Докажите, что $n_1+m_2 = n_2+m_1$.
# Рассмотрим параметрически заданную замкнутую кривую $\phi(t)$, будем говорить, что она имеет самопересечение, если есть точка на кривой, которая порождается двумя различными значениями параметра $t_1$ и $t_2$, причем в окрестности этой точки фрагменты кривой в окрестности параметра $t_2$ лежат по разную сторону от кривой в окрестности параметра $t_1$. Докажите, что планарный эйлеров граф содержит эйлеров цикл, не имеющий самопересечений.
# Приведите пример двухсвязного планарного графа, который не является гамильтоновым.
# Докажите, что планарный четырехсвязный граф гамильтонов.
# Пусть $G$ - планарный граф, в котором каждый треугольник ограничивает область, не содержащую ребер, причем добавление любого ребра нарушает это свойство. Докажите, что $G$ гамильтонов.
# Докажите, что любой трехсвязный планарный граф имеет остов, у которого наибольшая степень равна 3.
# Докажите, что все колеса самодвойственны.
# Уложите четырехмерный куб на поверхности тора
# Уложите $K_7$ на поверхности тора
# Докажите, что $K_8$ нельзя уложить на поверхности тора
# Найдите максимальное $k$, что граф $K_k$ можно уложить на сфере с двумя ручками.
# Докажите, что для любого $m$ существует $k$, такое что граф с $K_k$ нельзя уложить на сфере с $m$ ручками.
# Посчитать хроматический многочлен цикла $C_n$
# Посчитать хроматический многочлен колеса $C_n + K_1$.
# Посчитать хроматический многочлен полного двудольного графа $K_{n,m}$.
# Докажите, что хроматический многочлен дерева равен $t(t-1)^{n - 1}$.
# Докажите, что если хроматический многочлен графа равен $t(t-1)^{n - 1}$, то граф является деревом.
# Приведите пример двух связных графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
# Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
# Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.
# Докажите или опровергните, что если граф $G$ с $n$ вершинами содержит гамильтонов цикл, причем ему принадлежат не все ребра графа, то (а) $\chi(G) \le 1 + n/2$ (б) $\chi(G) \ge 1 + n/2$ .
# Конъюнкцией $G_1 \wedge G_2$ графов называется граф с $V = V_1 \times V_2$, $(u_1, u_2)-(v_1, v_2) \in E$, если $u_1v_1 \in E_1$ и $u_2v_2\in E_2$. Доказать, что хроматическое число конъюнкции $G_1\wedge G_2$ графов $G_1$ и $G_2$ двух графов не превосходит хроматических чисел этих графов.
# Рассмотрим связный граф $G$, не являющийся простым циклом нечетной длины, все простые циклы которого нечетны. Обозначим как $\chi'(G)$ минимальное число цветов, в которое можно раскрасить ребра граф $G$, чтобы ни в какую вершину не входило ребер одного цвета. Докажите, что $\chi'(G)=\Delta(G)$.
# Докажите, что в любой раскраске реберного графа каждая вершина смежна не более чем с двумя вершинами одного цвета
# Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
# Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.
# Граф называется однозначно раскрашиваемым, если любые две его раскраски в $\chi(G)$ цветов совпадают с точностью до переименования цветов. Приведите пример однозначно раскрашиваемого графа и графа, который не является однозначно раскрашиваемым
# Какое минимальное число вершин может быть в однозначно раскрашиваемом в 3 цвета графе, отличном от полного графа?
# Какое минимальное число ребер может быть в однозначно раскрашиваемом в $k$ цветов графе с $n$ вершинами?
# Доказать или опровернгнуть: любое вершинное покрытие содержит как подмножество минимальное по мощности вершинное покрытие.
# Доказать или опровергнуть: если в $G$ содержится реберно простой замкнутый путь, содержащий вершинное покрытие, то его реберный граф $E_G$ гамильтонов.
# Докажите, что $\alpha(G) \ge \frac{n}{1+\Delta(G)}$.
# Докажите, что $\alpha(G) \ge \sum (1 + \deg u)^{-1}$.
# Как может поменяться $\alpha(G)$ при удалении ребра? Удалении вершины? Добавлении ребра?
# Верно ли, что для двудольного графа значение $\alpha(G)$ равно размеру максимальной доли?
# Докажите, что $G$ двудольный тогда и только тогда, когда для любого $H$ - подграфа $G$ выполнено $\alpha(H) \ge |VH|/2$ ($VH$ - множество вершин графа $H$).
# Докажите, что если в дереве расстояние между двумя любыми листьями четно, то в нем существует единственное максимальное по числу вершин независимое множество. Верно ли обратное?
# Зафиксируем $n$ и $k$. Рассмотрим граф, удовлетворяющpий следующим условиям: (1) граф $G$ содержит $n$ вершин; (2) $\alpha(G) \le k$. Среди таких графов рассмотрим граф с минимальным числом ребер. Этот граф называется граф Турана. Докажите, что в графе Турана любые две смежные вершины имеют равную степень.
# Степень любых двух несмежных вершин в графе Турана отличается не более чем на $1$.
# Оцените, сколько ребер в графе Турана.
# Граф называется $\alpha$-критическим, если удаление любого ребра увеличивает $\alpha(G)$. Приведите пример $\alpha$-критического и не $\alpha$-критического графа.
# Докажите, что в любом дереве, кроме $K_2$ существует минимальное по числу вершин вершинное покрытие, включающее все вершины, соседние с листьями.
# Доминирующим множеством в графе называется множество вершин, такое что каждая вершина либо входит в это множество, либо имеет соседа в этом множестве. Докажите, что независимое множество вершин является максимальным по включению если и только если оно является доминирующим.
# Обозначим размер минимального доминирующего множества в графе как $\gamma(G)$. Как связаны $\alpha(G)$ и $\gamma(G)$?
# Докажите, что если в графе $G$ нет изолированных вершин, и $A$ - минимальное по включению доминирующее множество в $G$, то существует $B$, не имеющее общих вершин с $A$, также являющееся минимальным по включению доминирующим множеством в $G$.
# Обозначим размер минимального по мощности покрывающего множества в графе как $\beta(G)$. Как связаны $\gamma(G)$ и $\beta(G)$?
# Пусть $G$ - связный кубический граф, в котором не более двух мостов. Тогда в $G$ существует совершенное паросочетание.
# Приведите пример связного кубического графа, содержащего три моста, в котором нет совершенного паросочетания.
# $k$-факторизацией графа называется разбиение множество ребер графа на его $k$-факторы. Докажите, что $K_4$ имеет единственную 1-факторизацию.
# Найдите число $1$-факторизаций графа $K_6$.
# Найдите число $1$-факторизаций графа $K_{3,3}$.
# Найдите число $1$-факторов графа $K_{2n}$.
# Докажите, что граф $K_{6n-2}$ имеет 3-факторизацию.
# Докажите, что граф $K_{4n+1}$ имеет 4-факторизацию.
# Докажите, что граф $K_9$ представим в виде объединения 4 гамильтоновых циклов.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Пусть $G'$ получен из $G$ удалением не более чем $k - 1$ ребер. Тогда $G'$ содержит совершенное паросочетание. Указание: используйте теорему Татта.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Тогда для любого ребра $uv$ существует совершенное паросочетание, содержащее $uv$.
# Докажите, что если $G$ - регулярный граф четной степени, то у него есть 2-фактор.
# Пусть $r<k$ и хотя бы одно из них нечетно. Докажите, что существует $G$ - регулярный граф степени $k$, у которого нет $r$-фактора.
# Множество $S\subset V$, для которого $odd(G\setminus S)-|S|=def(G)$, называется барьером. $A(G)$ является барьером графа. Приведите пример графа, в котором $A(G)$ не является максимальным по включению барьером.
# Приведите пример графа, в котором $A(G)$ не является минимальным по включению барьером.
# Докажите, что пересечение двух максимальных по включению барьеров также является барьером.
# Пусть $x\in A(G)\cup C(G)$, $G'=G\setminus x$, $B'$ - барьер графа $G'$. Докажите, что $B=B'\cup x$ - барьер графа $G$. Следствие: любая вершина из $A(G) \cup C(G)$ входит в барьер графа $G$.
# Пусть $B$ - барьер графа $G$, тогда $B\cap D(G)$ пусто и все компоненты $D(G)$ являются подмножествами нечетных компонент связности графа $G\setminus B$.
# Пусть $B$ - барьер графа $G$, причем $x \in B$. Тогда $B' = B \setminus x$ - барьер графа $G' = G \setminus x$.
# Докажите, что пересечение всех максимальных по включению барьеров $G$ равно $A(G)$.
# Лапой называется индуцированный подграф $K_{1, 3}$ - вершина (центр лапы) и три её соседа, не связанные между собой. Докажите, что если $B$ - минимальный по включению барьер $G$, то каждая вершина $B$ - центр лапы в $G$.
# Докажите, что если связный граф $G$ содержит четное число вершин и не содержит лапы, то он содержит совершенное паросочетание (Теорема Сумнера-Лас Вергнаса).
# Найдите математическое ожидание степени вершины в биномиальной модели $G(n, p)$.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является деревом ($m = n - 1$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является деревом.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является гамильтоновым циклом ($m = n$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является гамильтоновым циклом.
# Докажите, что если $p = o(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. не имеет ребер (а.п.н. = асимптотически почти наверное = с вероятностью, стремящейся к 1).
# Докажите, что если $p = \omega(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. имеет хотя бы одно ребро.
# Пусть $p = \frac{c}{n^2}$ для некоторого $c$. Найдите вероятность того, $G(n, p)$ имеет хотя бы одно ребро.
# Оцените центральный биномиальный коэффициент ${2n \choose n}$ снизу величиной порядка $\frac {4^n}{\sqrt{n}}$. Указание: используйте формулу Стирлинга.
# Рассмотрим число ребер $m$, такое что $m(n) \to \infty$ и ${n \choose 2} - m(n) \to \infty$, а также $p(n) = \frac {m(n)}{n \choose 2}$. Докажите, что вероятность того, что $G(n, p)$ имеет ровно $m$ ребер есть $\Omega(m^{-0.5})$.
# Рассмотрим свойство $A$, а и такие же $m(n)$ и $p(n)$, как в предыдущей задаче. Докажите, что $P(G(n, m) \in A) \le C \sqrt{m} P(G(n, p) \in A)$.
# Рассмотрим следующую модель генерации случайного графа. Сначала проведем каждое ребро с вероятностью $\frac 12$. Затем, для каждой пары вершин, между которыми не было проведено ребро на первом шаге, проведем ребро с вероятностью $\frac 13$. Как эта модель соотносится со стандартными моделями Эрдёша-Реньи?
# Назовём свойство случайного графа монотонным, если оно сохраняется при добавлении ребра. Рассмотрим монотонное свойство $A$ при фиксированном размере графа $n$. Докажите, что $P(G(n, p) \in A)$ возрастает при возрастании $p$.
# Придумайте такое свойство, что вероятность, что $G(n, \frac 12)$ обладает этим свойством, стремится к $\frac 13$.
# Пусть для некоторого свойства $A$ существует две функции $p_1(n)$ и $p_2(n)$, что для графа $G(n, p_1(n))$ свойство $A$ а.п.н. не выполняется, а для $G(n, p_2(n))$ свойство $A$ а.п.н. выполняется. Докажите, что существует функция $p'(n)$, что для случайного графа $G(n, p'(n))$ свойство $A$ выполняется с вероятностью, стремящейся к $\frac 12$.
# Докажите, что $G(n, \frac {2\ln n}{n})$ а.п.н. не содержит изолированных вершин.
# Рассмотрим модель случайного двудольного графа $G(n, n, p)$: из полного двудольного графа $K_{n,n}$ каждое ребро удаляется с вероятностью $1 - p$. Пусть $X$ -- количество изолированных вершин первой доли. Найдите $EX$ и $DX$.
# Докажите, что если $p = o(n^{-1.5})$, то $G(n, p)$ а.п.н. является объединением компонент связности размера 1 и 2.
# Докажите, что если $p = \omega(n^{-1.5})$, то $G(n, p)$ а.п.н. содержит путь длины 2.
# Выведите формулу вероятности того, что расстояние между фиксированными вершинами $u$ и $v$ больше двух.
# Пусть $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$. Покажите, что $G(n, p)$ а.п.н. имеет диаметр не больше 2.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p$ -- константа.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$.
# Пусть $p = o(n^{-\frac 23})$. Докажите, что а.п.н. $G(n, p)$ не содержит $K_4$.
# Пусть $p = \frac dn$. Докажите, что в $G(n, p)$ каждая вершина а.п.н. принадлежит не более, чем одному треугольнику.
# Пусть $p = \omega(n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. содержит цикл длины $k$.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {2\ln n}{n})$ стремится к бесконечности. Можно ли это считать доказательством а.п.н. связности графа $G(n, \frac {2\ln n}n)$?
# Докажите, что $G(n, \frac dn), d > 1$ а.п.н. содержит индуцированный путь длины $\sqrt{\log n}$.
# Подберите $p(n)$ и приведите пример случайной величины $X$ в модели случайного графа $G(n, p)$, что $EX \to \infty$, но $\mathcal{P}(X = 0) \nrightarrow 0$.
Анонимный участник

Навигация