Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2019 осень

14 979 байт добавлено, 17:37, 12 ноября 2019
Нет описания правки
# Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
# Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.
# Граф называется однозначно раскрашиваемым, если любые две его раскраски в $\chi(G)$ цветов совпадают с точностью до переименования цветов. Приведите пример однозначно раскрашиваемого графа и графа, который не является однозначно раскрашиваемым
# Какое минимальное число вершин может быть в однозначно раскрашиваемом в 3 цвета графе, отличном от полного графа?
# Какое минимальное число ребер может быть в однозначно раскрашиваемом в $k$ цветов графе с $n$ вершинами?
# Доказать или опровернгнуть: любое вершинное покрытие содержит как подмножество минимальное по мощности вершинное покрытие.
# Доказать или опровергнуть: если в $G$ содержится реберно простой замкнутый путь, содержащий вершинное покрытие, то его реберный граф $E_G$ гамильтонов.
# Докажите, что $\alpha(G) \ge \frac{n}{1+\Delta(G)}$.
# Докажите, что $\alpha(G) \ge \sum (1 + \deg u)^{-1}$.
# Как может поменяться $\alpha(G)$ при удалении ребра? Удалении вершины? Добавлении ребра?
# Верно ли, что для двудольного графа значение $\alpha(G)$ равно размеру максимальной доли?
# Докажите, что $G$ двудольный тогда и только тогда, когда для любого $H$ - подграфа $G$ выполнено $\alpha(H) \ge |VH|/2$ ($VH$ - множество вершин графа $H$).
# Докажите, что если в дереве расстояние между двумя любыми листьями четно, то в нем существует единственное максимальное по числу вершин независимое множество. Верно ли обратное?
# Зафиксируем $n$ и $k$. Рассмотрим граф, удовлетворяющpий следующим условиям: (1) граф $G$ содержит $n$ вершин; (2) $\alpha(G) \le k$. Среди таких графов рассмотрим граф с минимальным числом ребер. Этот граф называется граф Турана. Докажите, что в графе Турана любые две смежные вершины имеют равную степень.
# Степень любых двух несмежных вершин в графе Турана отличается не более чем на $1$.
# Оцените, сколько ребер в графе Турана.
# Граф называется $\alpha$-критическим, если удаление любого ребра увеличивает $\alpha(G)$. Приведите пример $\alpha$-критического и не $\alpha$-критического графа.
# Докажите, что в любом дереве, кроме $K_2$ существует минимальное по числу вершин вершинное покрытие, включающее все вершины, соседние с листьями.
# Доминирующим множеством в графе называется множество вершин, такое что каждая вершина либо входит в это множество, либо имеет соседа в этом множестве. Докажите, что независимое множество вершин является максимальным по включению если и только если оно является доминирующим.
# Обозначим размер минимального доминирующего множества в графе как $\gamma(G)$. Как связаны $\alpha(G)$ и $\gamma(G)$?
# Докажите, что если в графе $G$ нет изолированных вершин, и $A$ - минимальное по включению доминирующее множество в $G$, то существует $B$, не имеющее общих вершин с $A$, также являющееся минимальным по включению доминирующим множеством в $G$.
# Обозначим размер минимального по мощности покрывающего множества в графе как $\beta(G)$. Как связаны $\gamma(G)$ и $\beta(G)$?
# Пусть $G$ - связный кубический граф, в котором не более двух мостов. Тогда в $G$ существует совершенное паросочетание.
# Приведите пример связного кубического графа, содержащего три моста, в котором нет совершенного паросочетания.
# $k$-факторизацией графа называется разбиение множество ребер графа на его $k$-факторы. Докажите, что $K_4$ имеет единственную 1-факторизацию.
# Найдите число $1$-факторизаций графа $K_6$.
# Найдите число $1$-факторизаций графа $K_{3,3}$.
# Найдите число $1$-факторов графа $K_{2n}$.
# Докажите, что граф $K_{6n-2}$ имеет 3-факторизацию.
# Докажите, что граф $K_{4n+1}$ имеет 4-факторизацию.
# Докажите, что граф $K_9$ представим в виде объединения 4 гамильтоновых циклов.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Пусть $G'$ получен из $G$ удалением не более чем $k - 1$ ребер. Тогда $G'$ содержит совершенное паросочетание. Указание: используйте теорему Татта.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Тогда для любого ребра $uv$ существует совершенное паросочетание, содержащее $uv$.
# Докажите, что если $G$ - регулярный граф четной степени, то у него есть 2-фактор.
# Пусть $r<k$ и хотя бы одно из них нечетно. Докажите, что существует $G$ - регулярный граф степени $k$, у которого нет $r$-фактора.
# Множество $S\subset V$, для которого $odd(G\setminus S)-|S|=def(G)$, называется барьером. $A(G)$ является барьером графа. Приведите пример графа, в котором $A(G)$ не является максимальным по включению барьером.
# Приведите пример графа, в котором $A(G)$ не является минимальным по включению барьером.
# Докажите, что пересечение двух максимальных по включению барьеров также является барьером.
# Пусть $x\in A(G)\cup C(G)$, $G'=G\setminus x$, $B'$ - барьер графа $G'$. Докажите, что $B=B'\cup x$ - барьер графа $G$. Следствие: любая вершина из $A(G) \cup C(G)$ входит в барьер графа $G$.
# Пусть $B$ - барьер графа $G$, тогда $B\cap D(G)$ пусто и все компоненты $D(G)$ являются подмножествами нечетных компонент связности графа $G\setminus B$.
# Пусть $B$ - барьер графа $G$, причем $x \in B$. Тогда $B' = B \setminus x$ - барьер графа $G' = G \setminus x$.
# Докажите, что пересечение всех максимальных по включению барьеров $G$ равно $A(G)$.
# Лапой называется индуцированный подграф $K_{1, 3}$ - вершина (центр лапы) и три её соседа, не связанные между собой. Докажите, что если $B$ - минимальный по включению барьер $G$, то каждая вершина $B$ - центр лапы в $G$.
# Докажите, что если связный граф $G$ содержит четное число вершин и не содержит лапы, то он содержит совершенное паросочетание (Теорема Сумнера-Лас Вергнаса).
# Найдите математическое ожидание степени вершины в биномиальной модели $G(n, p)$.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является деревом ($m = n - 1$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является деревом.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является гамильтоновым циклом ($m = n$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является гамильтоновым циклом.
# Докажите, что если $p = o(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. не имеет ребер (а.п.н. = асимптотически почти наверное = с вероятностью, стремящейся к 1).
# Докажите, что если $p = \omega(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. имеет хотя бы одно ребро.
# Пусть $p = \frac{c}{n^2}$ для некоторого $c$. Найдите вероятность того, $G(n, p)$ имеет хотя бы одно ребро.
# Оцените центральный биномиальный коэффициент ${2n \choose n}$ снизу величиной порядка $\frac {4^n}{\sqrt{n}}$. Указание: используйте формулу Стирлинга.
# Рассмотрим число ребер $m$, такое что $m(n) \to \infty$ и ${n \choose 2} - m(n) \to \infty$, а также $p(n) = \frac {m(n)}{n \choose 2}$. Докажите, что вероятность того, что $G(n, p)$ имеет ровно $m$ ребер есть $\Omega(m^{-0.5})$.
# Рассмотрим свойство $A$, а и такие же $m(n)$ и $p(n)$, как в предыдущей задаче. Докажите, что $P(G(n, m) \in A) \le C \sqrt{m} P(G(n, p) \in A)$.
# Рассмотрим следующую модель генерации случайного графа. Сначала проведем каждое ребро с вероятностью $\frac 12$. Затем, для каждой пары вершин, между которыми не было проведено ребро на первом шаге, проведем ребро с вероятностью $\frac 13$. Как эта модель соотносится со стандартными моделями Эрдёша-Реньи?
# Назовём свойство случайного графа монотонным, если оно сохраняется при добавлении ребра. Рассмотрим монотонное свойство $A$ при фиксированном размере графа $n$. Докажите, что $P(G(n, p) \in A)$ возрастает при возрастании $p$.
# Придумайте такое свойство, что вероятность, что $G(n, \frac 12)$ обладает этим свойством, стремится к $\frac 13$.
# Пусть для некоторого свойства $A$ существует две функции $p_1(n)$ и $p_2(n)$, что для графа $G(n, p_1(n))$ свойство $A$ а.п.н. не выполняется, а для $G(n, p_2(n))$ свойство $A$ а.п.н. выполняется. Докажите, что существует функция $p'(n)$, что для случайного графа $G(n, p'(n))$ свойство $A$ выполняется с вероятностью, стремящейся к $\frac 12$.
# Докажите, что $G(n, \frac {2\ln n}{n})$ а.п.н. не содержит изолированных вершин.
# Рассмотрим модель случайного двудольного графа $G(n, n, p)$: из полного двудольного графа $K_{n,n}$ каждое ребро удаляется с вероятностью $1 - p$. Пусть $X$ -- количество изолированных вершин первой доли. Найдите $EX$ и $DX$.
# Докажите, что если $p = o(n^{-1.5})$, то $G(n, p)$ а.п.н. является объединением компонент связности размера 1 и 2.
# Докажите, что если $p = \omega(n^{-1.5})$, то $G(n, p)$ а.п.н. содержит путь длины 2.
# Выведите формулу вероятности того, что расстояние между фиксированными вершинами $u$ и $v$ больше двух.
# Пусть $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$. Покажите, что $G(n, p)$ а.п.н. имеет диаметр не больше 2.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p$ -- константа.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$.
# Пусть $p = o(n^{-\frac 23})$. Докажите, что а.п.н. $G(n, p)$ не содержит $K_4$.
# Пусть $p = \frac dn$. Докажите, что в $G(n, p)$ каждая вершина а.п.н. принадлежит не более, чем одному треугольнику.
# Пусть $p = \omega(n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. содержит цикл длины $k$.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {2\ln n}{n})$ стремится к бесконечности. Можно ли это считать доказательством а.п.н. связности графа $G(n, \frac {2\ln n}n)$?
# Докажите, что $G(n, \frac dn), d > 1$ а.п.н. содержит индуцированный путь длины $\sqrt{\log n}$.
# Подберите $p(n)$ и приведите пример случайной величины $X$ в модели случайного графа $G(n, p)$, что $EX \to \infty$, но $\mathcal{P}(X = 0) \nrightarrow 0$.
Анонимный участник

Навигация