Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2019 осень

10 387 байт добавлено, 17:37, 12 ноября 2019
Нет описания правки
# Какое минимальное число вершин может быть в однозначно раскрашиваемом в 3 цвета графе, отличном от полного графа?
# Какое минимальное число ребер может быть в однозначно раскрашиваемом в $k$ цветов графе с $n$ вершинами?
 
# Доказать или опровернгнуть: любое вершинное покрытие содержит как подмножество минимальное по мощности вершинное покрытие.
# Доказать или опровергнуть: если в $G$ содержится реберно простой замкнутый путь, содержащий вершинное покрытие, то его реберный граф $E_G$ гамильтонов.
# Пусть $G$ - связный кубический граф, в котором не более двух мостов. Тогда в $G$ существует совершенное паросочетание.
# Приведите пример связного кубического графа, содержащего три моста, в котором нет совершенного паросочетания.
# $k$-факторизацией графа называется разбиение множество ребер графа на его $k$-факторы. Докажите, что $K_4$ имеет единственную 1-факторизацию.
# Найдите число $1$-факторизаций графа $K_6$.
# Найдите число $1$-факторизаций графа $K_{3,3}$.
# Найдите число $1$-факторов графа $K_{2n}$.
# Докажите, что граф $K_{6n-2}$ имеет 3-факторизацию.
# Докажите, что граф $K_{4n+1}$ имеет 4-факторизацию.
# Докажите, что граф $K_9$ представим в виде объединения 4 гамильтоновых циклов.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Пусть $G'$ получен из $G$ удалением не более чем $k - 1$ ребер. Тогда $G'$ содержит совершенное паросочетание. Указание: используйте теорему Татта.
# Пусть $G$ - регулярный граф степени $k$ с четным числом вершин, причем $\lambda(G) \ge k-1$. Тогда для любого ребра $uv$ существует совершенное паросочетание, содержащее $uv$.
# Докажите, что если $G$ - регулярный граф четной степени, то у него есть 2-фактор.
# Пусть $r<k$ и хотя бы одно из них нечетно. Докажите, что существует $G$ - регулярный граф степени $k$, у которого нет $r$-фактора.
# Множество $S\subset V$, для которого $odd(G\setminus S)-|S|=def(G)$, называется барьером. $A(G)$ является барьером графа. Приведите пример графа, в котором $A(G)$ не является максимальным по включению барьером.
# Приведите пример графа, в котором $A(G)$ не является минимальным по включению барьером.
# Докажите, что пересечение двух максимальных по включению барьеров также является барьером.
# Пусть $x\in A(G)\cup C(G)$, $G'=G\setminus x$, $B'$ - барьер графа $G'$. Докажите, что $B=B'\cup x$ - барьер графа $G$. Следствие: любая вершина из $A(G) \cup C(G)$ входит в барьер графа $G$.
# Пусть $B$ - барьер графа $G$, тогда $B\cap D(G)$ пусто и все компоненты $D(G)$ являются подмножествами нечетных компонент связности графа $G\setminus B$.
# Пусть $B$ - барьер графа $G$, причем $x \in B$. Тогда $B' = B \setminus x$ - барьер графа $G' = G \setminus x$.
# Докажите, что пересечение всех максимальных по включению барьеров $G$ равно $A(G)$.
# Лапой называется индуцированный подграф $K_{1, 3}$ - вершина (центр лапы) и три её соседа, не связанные между собой. Докажите, что если $B$ - минимальный по включению барьер $G$, то каждая вершина $B$ - центр лапы в $G$.
# Докажите, что если связный граф $G$ содержит четное число вершин и не содержит лапы, то он содержит совершенное паросочетание (Теорема Сумнера-Лас Вергнаса).
# Найдите математическое ожидание степени вершины в биномиальной модели $G(n, p)$.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является деревом ($m = n - 1$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является деревом.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является гамильтоновым циклом ($m = n$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является гамильтоновым циклом.
# Докажите, что если $p = o(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. не имеет ребер (а.п.н. = асимптотически почти наверное = с вероятностью, стремящейся к 1).
# Докажите, что если $p = \omega(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. имеет хотя бы одно ребро.
# Пусть $p = \frac{c}{n^2}$ для некоторого $c$. Найдите вероятность того, $G(n, p)$ имеет хотя бы одно ребро.
# Оцените центральный биномиальный коэффициент ${2n \choose n}$ снизу величиной порядка $\frac {4^n}{\sqrt{n}}$. Указание: используйте формулу Стирлинга.
# Рассмотрим число ребер $m$, такое что $m(n) \to \infty$ и ${n \choose 2} - m(n) \to \infty$, а также $p(n) = \frac {m(n)}{n \choose 2}$. Докажите, что вероятность того, что $G(n, p)$ имеет ровно $m$ ребер есть $\Omega(m^{-0.5})$.
# Рассмотрим свойство $A$, а и такие же $m(n)$ и $p(n)$, как в предыдущей задаче. Докажите, что $P(G(n, m) \in A) \le C \sqrt{m} P(G(n, p) \in A)$.
# Рассмотрим следующую модель генерации случайного графа. Сначала проведем каждое ребро с вероятностью $\frac 12$. Затем, для каждой пары вершин, между которыми не было проведено ребро на первом шаге, проведем ребро с вероятностью $\frac 13$. Как эта модель соотносится со стандартными моделями Эрдёша-Реньи?
# Назовём свойство случайного графа монотонным, если оно сохраняется при добавлении ребра. Рассмотрим монотонное свойство $A$ при фиксированном размере графа $n$. Докажите, что $P(G(n, p) \in A)$ возрастает при возрастании $p$.
# Придумайте такое свойство, что вероятность, что $G(n, \frac 12)$ обладает этим свойством, стремится к $\frac 13$.
# Пусть для некоторого свойства $A$ существует две функции $p_1(n)$ и $p_2(n)$, что для графа $G(n, p_1(n))$ свойство $A$ а.п.н. не выполняется, а для $G(n, p_2(n))$ свойство $A$ а.п.н. выполняется. Докажите, что существует функция $p'(n)$, что для случайного графа $G(n, p'(n))$ свойство $A$ выполняется с вероятностью, стремящейся к $\frac 12$.
# Докажите, что $G(n, \frac {2\ln n}{n})$ а.п.н. не содержит изолированных вершин.
# Рассмотрим модель случайного двудольного графа $G(n, n, p)$: из полного двудольного графа $K_{n,n}$ каждое ребро удаляется с вероятностью $1 - p$. Пусть $X$ -- количество изолированных вершин первой доли. Найдите $EX$ и $DX$.
# Докажите, что если $p = o(n^{-1.5})$, то $G(n, p)$ а.п.н. является объединением компонент связности размера 1 и 2.
# Докажите, что если $p = \omega(n^{-1.5})$, то $G(n, p)$ а.п.н. содержит путь длины 2.
# Выведите формулу вероятности того, что расстояние между фиксированными вершинами $u$ и $v$ больше двух.
# Пусть $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$. Покажите, что $G(n, p)$ а.п.н. имеет диаметр не больше 2.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p$ -- константа.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$.
# Пусть $p = o(n^{-\frac 23})$. Докажите, что а.п.н. $G(n, p)$ не содержит $K_4$.
# Пусть $p = \frac dn$. Докажите, что в $G(n, p)$ каждая вершина а.п.н. принадлежит не более, чем одному треугольнику.
# Пусть $p = \omega(n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. содержит цикл длины $k$.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {2\ln n}{n})$ стремится к бесконечности. Можно ли это считать доказательством а.п.н. связности графа $G(n, \frac {2\ln n}n)$?
# Докажите, что $G(n, \frac dn), d > 1$ а.п.н. содержит индуцированный путь длины $\sqrt{\log n}$.
# Подберите $p(n)$ и приведите пример случайной величины $X$ в модели случайного графа $G(n, p)$, что $EX \to \infty$, но $\mathcal{P}(X = 0) \nrightarrow 0$.
Анонимный участник

Навигация