Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2к 2019 осень

6387 байт добавлено, 17:37, 12 ноября 2019
Нет описания правки
# Лапой называется индуцированный подграф $K_{1, 3}$ - вершина (центр лапы) и три её соседа, не связанные между собой. Докажите, что если $B$ - минимальный по включению барьер $G$, то каждая вершина $B$ - центр лапы в $G$.
# Докажите, что если связный граф $G$ содержит четное число вершин и не содержит лапы, то он содержит совершенное паросочетание (Теорема Сумнера-Лас Вергнаса).
# Найдите математическое ожидание степени вершины в биномиальной модели $G(n, p)$.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является деревом ($m = n - 1$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является деревом.
# Найдите вероятность, что граф в равномерной модели $G(n, m)$ является гамильтоновым циклом ($m = n$).
# Найдите вероятность, что граф в биномиальной модели $G(n, p)$ является гамильтоновым циклом.
# Докажите, что если $p = o(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. не имеет ребер (а.п.н. = асимптотически почти наверное = с вероятностью, стремящейся к 1).
# Докажите, что если $p = \omega(\frac{1}{n^2})$, то случайный граф $G(n, p)$ а.п.н. имеет хотя бы одно ребро.
# Пусть $p = \frac{c}{n^2}$ для некоторого $c$. Найдите вероятность того, $G(n, p)$ имеет хотя бы одно ребро.
# Оцените центральный биномиальный коэффициент ${2n \choose n}$ снизу величиной порядка $\frac {4^n}{\sqrt{n}}$. Указание: используйте формулу Стирлинга.
# Рассмотрим число ребер $m$, такое что $m(n) \to \infty$ и ${n \choose 2} - m(n) \to \infty$, а также $p(n) = \frac {m(n)}{n \choose 2}$. Докажите, что вероятность того, что $G(n, p)$ имеет ровно $m$ ребер есть $\Omega(m^{-0.5})$.
# Рассмотрим свойство $A$, а и такие же $m(n)$ и $p(n)$, как в предыдущей задаче. Докажите, что $P(G(n, m) \in A) \le C \sqrt{m} P(G(n, p) \in A)$.
# Рассмотрим следующую модель генерации случайного графа. Сначала проведем каждое ребро с вероятностью $\frac 12$. Затем, для каждой пары вершин, между которыми не было проведено ребро на первом шаге, проведем ребро с вероятностью $\frac 13$. Как эта модель соотносится со стандартными моделями Эрдёша-Реньи?
# Назовём свойство случайного графа монотонным, если оно сохраняется при добавлении ребра. Рассмотрим монотонное свойство $A$ при фиксированном размере графа $n$. Докажите, что $P(G(n, p) \in A)$ возрастает при возрастании $p$.
# Придумайте такое свойство, что вероятность, что $G(n, \frac 12)$ обладает этим свойством, стремится к $\frac 13$.
# Пусть для некоторого свойства $A$ существует две функции $p_1(n)$ и $p_2(n)$, что для графа $G(n, p_1(n))$ свойство $A$ а.п.н. не выполняется, а для $G(n, p_2(n))$ свойство $A$ а.п.н. выполняется. Докажите, что существует функция $p'(n)$, что для случайного графа $G(n, p'(n))$ свойство $A$ выполняется с вероятностью, стремящейся к $\frac 12$.
# Докажите, что $G(n, \frac {2\ln n}{n})$ а.п.н. не содержит изолированных вершин.
# Рассмотрим модель случайного двудольного графа $G(n, n, p)$: из полного двудольного графа $K_{n,n}$ каждое ребро удаляется с вероятностью $1 - p$. Пусть $X$ -- количество изолированных вершин первой доли. Найдите $EX$ и $DX$.
# Докажите, что если $p = o(n^{-1.5})$, то $G(n, p)$ а.п.н. является объединением компонент связности размера 1 и 2.
# Докажите, что если $p = \omega(n^{-1.5})$, то $G(n, p)$ а.п.н. содержит путь длины 2.
# Выведите формулу вероятности того, что расстояние между фиксированными вершинами $u$ и $v$ больше двух.
# Пусть $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$. Покажите, что $G(n, p)$ а.п.н. имеет диаметр не больше 2.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p$ -- константа.
# Докажите, что $G(n, p)$ а.п.н имеет диаметр 2, если $p = c \sqrt{ \frac {\ln n}{n}}$, $c > \sqrt{2}$.
# Пусть $p = o(n^{-\frac 23})$. Докажите, что а.п.н. $G(n, p)$ не содержит $K_4$.
# Пусть $p = \frac dn$. Докажите, что в $G(n, p)$ каждая вершина а.п.н. принадлежит не более, чем одному треугольнику.
# Пусть $p = \omega(n)$ и $k$ -- константа. Покажите, что $G(n, p)$ а.п.н. содержит цикл длины $k$.
# Покажите, что матожидание количества остовных деревьев у графа $G(n, \frac {2\ln n}{n})$ стремится к бесконечности. Можно ли это считать доказательством а.п.н. связности графа $G(n, \frac {2\ln n}n)$?
# Докажите, что $G(n, \frac dn), d > 1$ а.п.н. содержит индуцированный путь длины $\sqrt{\log n}$.
# Подберите $p(n)$ и приведите пример случайной величины $X$ в модели случайного графа $G(n, p)$, что $EX \to \infty$, но $\mathcal{P}(X = 0) \nrightarrow 0$.
Анонимный участник

Навигация