Редактирование: Список заданий по ДМ 2к 2021 осень

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 6: Строка 6:
 
# Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
 
# Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
 
# Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
 
# Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
# Докажите, что в графе число вершин нечетной степени четно.
+
# Докажите, что если в графе число вершин нечетной степени четно.
 
# Докажите, что если в графе ровно две вершины нечетной степени, то они лежат в одной компоненте связности.
 
# Докажите, что если в графе ровно две вершины нечетной степени, то они лежат в одной компоненте связности.
 
# Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Для заданных $n$ и $k$ постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) = k$.
 
# Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Для заданных $n$ и $k$ постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) = k$.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)