Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2020 весна

25 935 байт добавлено, 22:54, 5 июня 2020
Нет описания правки
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число единиц кратно 3. Сделайте вывод.
# Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых второй символ с конца равен последнему символу.
# Запишите регулярное выражения для слов над бинарным алфавитом, содержащих два нуля подряд.
# Запишите регулярное выражения для слов над бинарным алфавитом, содержащих не более одного места, где встречаются два нуля подряд.
# Запишите регулярное выражения для слов над бинарным алфавитом, не содержащих два нуля подряд.
# Запишите регулярное выражения для слов над алфавитом $\{a, b, c\}$, содержащих нечетное число букв $a$.
# Запишите регулярное выражения для слов над бинарным алфавитом, задающих целое число в двоичной системе, не меньшее 8.
# Запишите регулярное выражения для слов над бинарным алфавитом, задающих целое число в двоичной системе, не меньшее 51.
# Запишите регулярное выражения для слов над алфавитом $\{a, b, c\}$, содержащих хотя бы одну букву $a$ и хотя бы одну букву $b$.
# Запишите регулярное выражения для слов над алфавитом $\{a, b, c\}$, содержащих хотя бы две буквы $a$ и хотя бы одну букву $b$.
# Запишите регулярное выражения для слов над бинарным алфавитом, которые представляют собой двоичную запись числа, кратного трем.
# Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых пятый символ с конца - единица.
# Докажите, что любой детерминированный автомат для языка слов над бинарным алфавитом, в которых $k$-й символ с конца равен 0, содержит $\Omega(2^k)$ состояний.
# Можно ли обобщить два предыдущих задания для любого размера алфавита $c$ следующим образом: построить семейство языков, для которых будут существовать НКА, содержащий $O(k)$ состояний, но любые ДКА будут содержать $\Omega(c^k)$ состояний?
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой развернутую двоичную запись чисел кратных 5 (сначала на вход подаются младшие разряды).
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой развернутую двоичную запись чисел кратных 6 (сначала на вход подаются младшие разряды).
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины $d$ которые он допускает, за $O(dn)$.
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины $d$ которые он допускает, за $O(\log{(d)} \cdot poly(n))$ для некоторого полинома $poly$.
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины не больше $d$ которые он допускает, за $O(\log{(d)} \cdot poly(n))$ для некоторого полинома $poly$.
# Петя строит автомат для конкатенации языков $L_1$ и $L_2$ из автоматов для этих языков. Оказалось, что автомат для $L_1$ содержит только одно терминальное состояние и Петя просто объединил в одно это состояние и начальное состояние автомата для $L_2$. Всегда ли у Пети получится то, что нужно?
# Петя строит автомат для объединения языков $L_1$ и $L_2$ из автоматов для этих языков. Решив сэкономить, Петя просто объединил в одно начальные состояния автоматов для $L_1$ и $L_2$. Всегда ли у Пети получится то, что нужно?
# Петя строит автомат для замыкания Клини языка $L$. Решив сэкономить, Петя просто провёл $\varepsilon$-переход из каждого терминального состояния в начальное состояние, и сделал начальное состояние также терминальным. Всегда ли у Пети получится то, что нужно?
# Докажите нерегулярность языка палиндромов, если алфавит содержит хотя бы два символа. Что если алфавит унарный?
# Докажите нерегулярность языка тандемных повторов $L = \{ ww | w \in \Sigma^* \}$, если алфавит содержит хотя бы два символа. Что если алфавит унарный?
# Докажите нерегулярность языка $0^n1^m$, $n \le m$
# Докажите нерегулярность языка $0^n1^m$, $n \ne m$
# Докажите нерегулярность языка $0^{n^2}$
# Докажите нерегулярность языка $0^p$, $p$ {{---}} простое
# Докажите нерегулярность языка двоичных записей простых чисел
# Докажите нерегулярность языка $0^n1^m$, $gcd(n, m) = 1$
# Приведите пример нерегулярного языка, для которого выполнена лемма о разрастании
# Обозначим как $\min L$ множество слов $w \in L$, таких что никакой собственный префикс $w$ не является словом языка $L$. Докажите, что если $L$ регулярный, то и $\min L$ регулярный.
# Обозначим как $\max L$ множество слов $w \in L$, таких что $w$ не является собственным префиксом никакого словом языка $L$. Докажите, что если $L$ регулярный, то и $\max L$ регулярный.
# Обозначим как $\mbox{pref}\,L$ множество префиксов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{pref}\,L$ регулярный.
# Обозначим как $\mbox{suf}\,L$ множество суффиксов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{suf}\,L$ регулярный.
# Пусть $a$ и $b$ - слова равной длины $n$. Обозначим как $\mbox{alt}(a, b)$ слово $a_1b_1a_2b_2\ldots a_nb_n$. Для языков $R$ и $S$ обозначим как $\mbox{alt}(R, S)$ множество всех слов, которые получаются как $\mbox{alt}(a, b)$ где $a \in R$, $b \in S$. Докажите, что если $R$ и $S$ регулярные, то $\mbox{alt}(R, S)$ регулярный.
# Пусть $a$ и $b$ - слова. Обозначим как $\mbox{shuffle}(a, b)$ множество слов, которые можно составить, вставив в слово $a$ все буквы слова $b$ в том порядке, в котором они идут в $b$. Например, $\mbox{shuffle}(01, 23)=\{0123, 0213, 0231, 2013, 2031, 2301\}$. Для языков $R$ и $S$ обозначим как $\mbox{shuffle}(R, S)$ объединение всех множеств $\mbox{shuffle}(a, b)$ где $a \in R$, $b \in S$. Докажите, что если $R$ и $S$ регулярные, то $\mbox{shuffle}(R, S)$ регулярный.
# Обозначим как $\mbox{cycle}\,L$ множество циклических сдвигов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{cycle}\,L$ регулярный.
# Обозначим как $\mbox{half}\,L$ множество таких слов $a$, что существует слово $b$ такой же длины, как и $a$, что $ab \in L$. Докажите, что если $L$ регулярный, то и $\mbox{half}\,L$ регулярный.
# Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $ X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $ X + Y = Z $. Докажите, что этот язык регулярный.
# То же, что и предыдущее, только $\{x_{n-1} y_{n-1} z_{n-1} \dots x_1 y_1 z_1 x_0 y_0 z_0 \mid \dots \}$.
# Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $X \times Y = Z$. Докажите, что этот язык не является регулярным.
# Из алгоритма построения множества различимых состояний следует, что $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n^2)$. Докажите, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n)$.
# Постройте КС-грамматику для правильных скобочных последовательностей с двумя типами скобок. В этом и следующих заданиях, после разработки КС грамматики необходимо выбрать в качестве примера слово и продемонстрировать его левосторонний вывод и дерево разбора.
# Постройте КС-грамматику для языка $0^n1^n$.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно удвоенному числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}$.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}\cup 1^k0^n2^{k+n}$. Сделайте вывод про КС языки.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}1^i0^j2^{i+j}$. Сделайте вывод про КС языки.
# Пусть задана КС-грамматика для языка $L$. Укажите, как построить КС-грамматику для языка $L^*$.
# Пусть задана КС-грамматика для языка $L$. Обозначим как $L^R$ язык, составленный из слов, которые, если их прочитать от конца к началу, принадлежат языку $L$. Укажите, как построить КС-грамматику для языка $L^R$.
# Постройте КС-грамматику для языка $0^i1^j2^k$, $i \ne j$ или $j \ne k$.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются палиндромами.
# Постройте КС-грамматику для языка слов над алфавитом $\{(, )\}$, которые не являются правильными скобочными последовательностями.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей не равно числу единиц.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются тандемными повторами (не имеют вид $xx$ для некоторого слова $x$).
# Постройте КС-грамматику, описывающие академические регулярные выражения над алфавитом $\{0, 1\}$.
# КС грамматика называется линейной, если в правых частях правил встречается максимум один нетерминал. Праволинейные грамматики, в которых этот нетерминал находится на последнем месте, порождают регулярные языки. Приведите пример линейной грамматики, которая порождает нерегулярный язык.
# КС грамматика называется леволинейной, если в правых частях правил встречается максимум один нетерминал, причем если он есть, то находится на первом месте. Докажите, что язык можно породить леволинейной грамматикой тогда и только тогда, когда он регулярный.
# КС грамматика называется смешанной линейной, если в правых частях правил встречается максимум один нетерминал, причем если он есть, то находится либо на первом, либо на последнем месте. Докажите, что существует КС язык, не являющийся регулярным, который можно породить смешанной линейной грамматикой.
# Постройте КС-грамматику для описаний КС грамматик.
# Верно ли, что любую КС-грамматику можно привести к форме, когда любое правило имеет вид $A\to BCD$ или $A\to a$?
# Приведите пример КС-языка, не являющегося регулярным, дополнение к которому также является КС.
# Приведите пример двух КС-языков, не являющихся регулярными, пересечение которых также является КС, но не регулярным, причем отлично от обоих пересекаемых языков.
# Предложите алгоритм проверки, что в грамматике выводится хотя бы одно слово.
# Предложите алгоритм нахождения слова минимальной длины, выводящегося в заданной грамматике.
# Грамматика называется леворекурсивной, если найдется такой нетерминал A, что за один или более шаг из A можно вывести строку, которая начинается с A ($A \Rightarrow^+ A\alpha$). Предложите алгоритм, который проверяет, является ли грамматика леворекурсивной.
# Предложите алгоритм проверки, что в заданная КС грамматика в НФХ порождает конечное число слов.
# Предложите алгоритм, который получает на вход КС грамматику в НФХ, про которую с помощью алгоритма из предыдущего задания выяснили, что она порождает конечное число слов. На выход необходимо выдать самое длинное слово, которое порождается этой КСГ.
# Билл поменял местами шаги алгоритма приведения КСГ к НФХ: он сначала удаляет цепные правила, а затем eps-правила. Будет ли корректно работать алгоритм?
# Билл поменял местами шаги алгоритма приведения КСГ к НФХ: он сначала удаляет eps-правила, а затем длинные правые части. Можно ли поправить алгоритм удаления eps-правил, чтобы он работал с длинными правыми частями? Чем эта версия алгоритма хуже оригинальной?
# Алиса разработала свою нормальную форму грамматики, в которой каждое правило имеет вид $A \to BCD$, $A \to BC$ или $A \to c$. Как обобщить алгоритм КЯК на грамматики в такой форме? Сравните получившийся алгоритм с оригинальным.
# Алиса разработала свою нормальную форму грамматики, в которой каждое правило имеет вид $A \to BC$, $A \to B$ или $A \to c$. Как обобщить алгоритм КЯК на грамматики в такой форме? Сравните получившийся алгоритм с оригинальным.
# Рассмотрим дерево разбора некоторого слова в грамматике в НФХ. Как соотносятся количество нетерминалов и терминалов в дереве?
# Докажите, что язык не является КС: $0^i1^j2^k$, $i<j<k$.
# Докажите, что язык не является КС: $0^n1^n2^k$, $k<n$.
# Докажите, что язык не является КС: $0^p$, $p$ простое.
# Докажите, что язык двоичных записей простых чисел не является КС.
# Докажите, что язык не является КС: $0^i1^j$, $j=i^2$.
# Докажите, что язык не является КС: $0^n1^n2^k$, $n<k<2n$.
# Докажите, что язык не является КС: $ww^Rw$, $w$ - строка из 0 и 1, $w^R$ - развернутая строка $w$.
# Докажите, что язык $\{0^n1^m2^n3^m\}$ не является КС.
# Докажите, что язык $\{0^n1^m2^n| n \ne m\}$ не является КС.
# Верно ли, что любой КС-язык над односимвольным алфавитом является регулярным?
# Рассмотрим несколько неправильных модификаций леммы о разрастании для КС-языков. Для каждой модификации придумайте КС-язык, который не удовлетворяет этой лемме. Для КС-языка $L$ существует число $n$, что любое слово $w \in L$, $|w| \ge n$ можно разбить на четыре части $w = uvyz$, где $|vy| \le n$, $vy \neq \varepsilon$ что для любого $k \ge 0$, $uv^ky^kz \in L$.
# Для КС-языка $L$ существует число $n$, что любое слово $w \in L$, $|w| \ge n$ можно разбить на четыре части $w = vxyz$, где $|vxy| \le n$, $vy \neq \varepsilon$, что для любого $k \ge 0$, $v^kxy^kz \in L$.
# Докажите, что следующая модификация леммы о разрастании верна: Для КС-языка $L$ существует число $n$, что любое слово $w \in L$, $|w| \ge n$ можно разбить на пять частей $w = uvxyz$, где $|vxy| \le n$, $v \neq \varepsilon$, $y \neq \varepsilon$ что для любого $k \ge 0$, $uv^kxy^kz \in L$.
# Постройте МП-автомат для языка слов, где число нулей равно числу единиц.
# Постройте МП-автомат для языка $0^n1^{2n}$.
# Постройте МП-автомат для языка $0^n1^m2^{n+m}$.
# Постройте МП-автомат для языка $0^{2n}1^n$.
# Постройте МП-автомат для языка $0^n1^n\cup0^n1^{2n}$.
# Постройте МП-автомат для языка слов $0^n1^m$, где $n \le m \le 2n$.
# Докажите, что для любых $p$ и $q$ существует МП-автомат для языка слов $0^n1^m$, где $n/m=p/q$
# Постройте автомат с магазинной памятью для языка слов над алфавитом $\{0, 1, 2\}$, которые содержат равное число двоек и равное число единиц, или равное число двоек и равное число нулей.
# Рассмотрим список слов $A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ над алфавитом $\Sigma$. Введем $n$ новых различных символов $d_1, d_2, \ldots, d_n$. Рассмотрим алфавит $\Sigma' = \Sigma \cup \{d_1, d_2, \ldots, d_n\}$. Рассмотрим язык списка $A$, обозначаемый как $L_A$, в который входят все слова вида $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}d_{i_k}d_{i_{k-1}}\ldots d_{i_1}$. Докажите, что для любого списка $A$ язык $L_A$ является контекстно-свободным.
# Докажите, что дополнение к языку списка $L_A$ является контекстно-свободным для любого списка $A$.
# Можно неправильно определить язык списка $A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ из предыдущего задания, составив его из слов вида $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}d_{i_1}d_{i_2}\ldots d_{i_k}$. Докажите или опровергните, что при таком неправильном определении язык списка все еще будет конткстно-свободным для любого списка $A$.
# Предложите алгоритм проверки, что МП-автомат допускает заданное слово.
# Назовем состояние МП-автомата бесполезным, если автомат не может перейти в него ни при каком входном слове. Предложите алгоритм проверки состояния МП-автомата на бесполезность.
# Предложите алгоритм проверки, что МП-автомат допускает хотя бы одно слово, содержащее заданное в качестве подстроки.
# Предложите алгоритм проверки, что МП-автомат допускает бесконечное число слов.
# Пусть $f : \Sigma \to \Sigma^*$ - функция, сопоставляющая каждому символу некоторую строку. Распространим $f$ на слова следующим образом: $f(c_1c_2\ldots c_k) = f(c_1)f(c_2)\ldots f(c_k)$. Обозначим как $f(L)$ множество слов $f(x)$ для всех $x \in L$. Докажите или опровергните, что если $L$ - КС, то $f(L)$ также КС.
# Пусть $f : \Sigma \to \Sigma^*$ - функция, сопоставляющая каждому символу некоторую строку. Распространим $f$ на слова следующим образом: $f(c_1c_2\ldots c_k) = f(c_1)f(c_2)\ldots f(c_k)$. Обозначим как $f^{-1}(L)$ множество таких слов $x$, для которых $f(x) \in L$. Докажите или опровергните, что если $L$ - КС, то $f^{-1}(L)$ также КС.
Анонимный участник

Навигация