Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2021 весна

9991 байт добавлено, 21:09, 26 марта 2021
Нет описания правки
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Какую строку длины 3 оптимально выбрать Васе, чтобы его вероятность выигрыша была максимальна?
# Предложите решение предыдущей задачи для произвольной выигрышной строки Пети (за полином от длины этой строки).
# Серия «парадоксы теории вероятности». Мы предлагаем попытаться решать задачи этой серии самостоятельно, а не с помощью интернета, потому что они, конечно, там подробно разобраны. Парадокс Монти Холла. Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?
# Парадокс трёх заключённых. Трое заключённых, A, B и С, заключены в одиночные камеры и приговорены к смертной казни. Губернатор случайным образом выбирает одного из них и милует его. Стражник, охраняющий заключённых, знает, кто помилован, но не имеет права сказать этого. Заключённый A просит стражника сказать ему имя того (другого) заключённого, кто точно будет казнён: «Если B помилован, скажи мне, что казнён будет C. Если помилован C, скажи мне, что казнён будет B. Если они оба будут казнены, а помилован я, подбрось монету, и скажи имя B или C». Стражник говорит заключённому A, что заключённый B будет казнён. Заключённый A рад это слышать, поскольку он считает, что теперь вероятность его выживания стала 1/2, а не 1/3, как была до этого. Заключённый A тайно говорит заключённому С, что B будет казнён. Заключённый С также рад это слышать, поскольку он всё ещё полагает, что вероятность выживания заключённого А — 1/3, а его вероятность выживания возросла до 2/3. Как такое может быть?
# Нетранзитивные кости. Набор игральных костей нетранзитивен, если он состоит из трёх игральных костей A, B и C, для которых результат бросания кости A с вероятностью свыше 50% больше результата бросания кости B, результат бросания кости B с вероятностью свыше 50% больше результата бросания кости C, однако утверждение о том, что результат бросания кости A с вероятностью свыше 50% больше результата бросания кости C, является ошибочным. Постройте набор нетранзитивных костей.
# Усиленные нетранзитивные кости. Постройте набор из $n$ костей, в котором для любой кости есть другая, для которой с вероятностью свыше 50% будет получено большее число.
# Парадокс Берксона. Два независимых события могут становиться зависимыми, если произошло некоторое событие. Придумайте три события $A$, $B$ и $C$, такие что $A$ и $B$ независимы, но $A \cap C$ и $B \cap C$ зависимы после замены вероятностного пространства на $C$ и новой дискретной плотности вероятности $p_C(x) = p(x) / P(C)$.
# Парадокс дружбы — феномен, состоящий в том, что, как правило, у большинства людей друзей меньше, чем в среднем у их друзей. Прокомментируйте парадокс дружбы.
# Парадокс коробок Бертрана. Есть три коробки: первая содержит две золотых монеты, вторая содержит две серебряные монеты, третья содержит одну золотую и одну серебряную монету. После выбора случайной коробки и случайной монеты из нее, выбранная монета оказалась золотой. Какова вероятность того, что вторая монета в выбранной коробке также золотая?
# Парадокс Симпсона. Придумайте 4 дроби: $m_1/n_1$, $m_2/n_2$, $m_3/n_3$, $m_4/n_4$, чтобы выполнялось $m_1/n_1 < m_2/n_2$, $m_3/n_3 < m_4/n_4$ но $(m_1+m_3)/(n_1+n_3)>(m_2+m_4)/(n_2+n_4)$.
# Санкт-Петербургский парадокс. Рассматривается следующая задача. Вступая в игру, игрок платит некоторую сумму $s$, а затем подбрасывает честную монету, пока не выпадет 1. При выпадении 1 игра заканчивается, а игрок получает выигрыш, рассчитанный по следующим правилам. Если 1 выпала на $i$-м броске, игрок получает $2^i$. Для какой максимальной суммы $c$ есть смысл играть в эту игру?
# Парадокс галустков. Двое мужчин дарят друг другу на Рождество галстуки, купленные их жёнами. За напитками они начинают спорить, у кого галстук дешевле. Они приходят к тому, чтобы заключить пари — они будут консультироваться со своими жёнами и выяснят, какой галстук дороже. Условия пари в том, что человек с более дорогим галстуком должен отдать его проигравшему как утешительный приз. Первый человек рассуждает следующим образом: «Победа и поражения одинаково вероятны. Если я выиграю, я потеряю стоимость моего галстука. Но если я выиграю, то я выиграю больше, чем стоимость моего галстука. Поэтому шансы в мою пользу». Второй человек считает условия пари точно такими же, и, как ни парадоксально, кажется, оба мужчины имеют преимущество в этом пари.
# Парадокс двух конвертов. Есть два неразличимых конверта с деньгами. В одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму $X$. В чужом конверте равновероятно может находиться $2X$ или $\frac{X}{2}$. Поэтому если я поменяю конверт, то у меня в среднем будет $\left(2X+\frac{X}{2}\right)/2 = \frac54X$, то есть больше, чем сейчас. Значит, обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?
# Пусть в парадоксе двух конвертов в качестве распределения используется следующее: с вероятностью $\frac{2^n}{3^{n+1}}$ в конверты помещаются суммы $2^n$ и $2^{n+1}$. Покажите, что в этом случае при обмене обмена вероятность получить $2X$ равна $1$, если игрок видит сумму $X=1$ и $\frac{11}{10}X$ в случае $X > 1$. Таким образом обмен выгоден в любом случае. Как такое возможно?
Анонимный участник

Навигация