Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2024 весна

34 485 байт добавлено, 25 апрель
Нет описания правки
# Посчитайте и оцените асимптотически дисперсию для предыдущего задания.
# Блуждания по булевому кубу. Дана строка из $n$ нулей. За один шаг выбирается равномерно случайное число $i$ от $1$ до $n$ и $i$-й элемент строки заменяется на противоположный (0 на 1, а 1 на 0). Требуется найти математическое ожидание числа шагов до первого момента, когда строка будет полностью состоять из единиц. Разработайте алгоритм, который находит искомое матожидание. Примените свой алгоритм, чтобы найти значения матожидания для $n$ от 1 до 20.
# Предложите алгоритм решения задач ??53-?? 54 для произвольных выигрышных строк Васи и Пети (работающий за полином от суммы длин этих строк).
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Какую строку длины 3 оптимально выбрать Васе, чтобы его вероятность выигрыша была максимальна?
# Предложите решение предыдущей задачи для произвольной выигрышной строки Пети (за полином от длины этой строки).
# Серия «парадоксы теории вероятности». Мы предлагаем попытаться решать задачи этой серии самостоятельно, а не с помощью интернета, потому что они, конечно, там подробно разобраны. Парадокс Монти Холла. Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?
# Парадокс трёх заключённых. Трое заключённых, A, B и С, заключены в одиночные камеры и приговорены к смертной казни. Губернатор случайным образом выбирает одного из них и милует его. Стражник, охраняющий заключённых, знает, кто помилован, но не имеет права сказать этого. Заключённый A просит стражника сказать ему имя того (другого) заключённого, кто точно будет казнён: «Если B помилован, скажи мне, что казнён будет C. Если помилован C, скажи мне, что казнён будет B. Если они оба будут казнены, а помилован я, подбрось монету, и скажи имя B или C». Стражник говорит заключённому A, что заключённый B будет казнён. Заключённый A рад это слышать, поскольку он считает, что теперь вероятность его выживания стала 1/2, а не 1/3, как была до этого. Заключённый A тайно говорит заключённому С, что B будет казнён. Заключённый С также рад это слышать, поскольку он всё ещё полагает, что вероятность выживания заключённого А — 1/3, а его вероятность выживания возросла до 2/3. Как такое может быть?
# Нетранзитивные кости. Набор игральных костей нетранзитивен, если он состоит из трёх игральных костей A, B и C, для которых результат бросания кости A с вероятностью свыше 50% больше результата бросания кости B, результат бросания кости B с вероятностью свыше 50% больше результата бросания кости C, однако утверждение о том, что результат бросания кости A с вероятностью свыше 50% больше результата бросания кости C, является ошибочным. Постройте набор нетранзитивных костей.
# Можно ли то же самое сделать для нечетных монет?
# Усиленные нетранзитивные кости. Постройте набор из $n$ костей, в котором для любой кости есть другая, для которой с вероятностью свыше 50% будет получено большее число.
# Циклические нетранзитивные кости. Постройте набор из $n$ костей, в котором $i$-я кость ""побеждает"" $i+1$-ю, а последняя ""побеждает"" первую.
# Парадокс Берксона. Два независимых события могут становиться зависимыми, если произошло некоторое событие. Придумайте три события $A$, $B$ и $C$, такие что $A$ и $B$ независимы, но $A \cap C$ и $B \cap C$ зависимы после замены вероятностного пространства на $C$ и новой дискретной плотности вероятности $p_C(x) = p(x) / P(C)$.
# Парадокс дружбы — феномен, состоящий в том, что, как правило, у большинства людей друзей меньше, чем в среднем у их друзей. Прокомментируйте парадокс дружбы.
# Парадокс коробок Бертрана. Есть три коробки: первая содержит две золотых монеты, вторая содержит две серебряные монеты, третья содержит одну золотую и одну серебряную монету. После выбора случайной коробки и случайной монеты из нее, выбранная монета оказалась золотой. Какова вероятность того, что вторая монета в выбранной коробке также золотая?
# Парадокс Симпсона. Придумайте 4 дроби: $m_1/n_1$, $m_2/n_2$, $m_3/n_3$, $m_4/n_4$, чтобы выполнялось $m_1/n_1 < m_2/n_2$, $m_3/n_3 < m_4/n_4$ но $(m_1+m_3)/(n_1+n_3)>(m_2+m_4)/(n_2+n_4)$.
# Санкт-Петербургский парадокс. Рассматривается следующая задача. Вступая в игру, игрок платит некоторую сумму $s$, а затем подбрасывает честную монету, пока не выпадет 1. При выпадении 1 игра заканчивается, а игрок получает выигрыш, рассчитанный по следующим правилам. Если 1 выпала на $i$-м броске, игрок получает $2^i$. Для какой максимальной суммы $c$ есть смысл играть в эту игру?
# Парадокс галустков. Двое мужчин дарят друг другу на Рождество галстуки, купленные их жёнами. За напитками они начинают спорить, у кого галстук дешевле. Они приходят к тому, чтобы заключить пари — они будут консультироваться со своими жёнами и выяснят, какой галстук дороже. Условия пари в том, что человек с более дорогим галстуком должен отдать его проигравшему как утешительный приз. Первый человек рассуждает следующим образом: «Победа и поражения одинаково вероятны. Если я выиграю, я потеряю стоимость моего галстука. Но если я выиграю, то я выиграю больше, чем стоимость моего галстука. Поэтому шансы в мою пользу». Второй человек считает условия пари точно такими же, и, как ни парадоксально, кажется, оба мужчины имеют преимущество в этом пари.
# Парадокс двух конвертов. Есть два неразличимых конверта с деньгами. В одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму $X$. В чужом конверте равновероятно может находиться $2X$ или $\frac{X}{2}$. Поэтому если я поменяю конверт, то у меня в среднем будет $\left(2X+\frac{X}{2}\right)/2 = \frac54X$, то есть больше, чем сейчас. Значит, обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?
# Пусть в парадоксе двух конвертов в качестве распределения используется следующее: с вероятностью $\frac{2^n}{3^{n+1}}$ в конверты помещаются суммы $2^n$ и $2^{n+1}$. Покажите, что в этом случае при обмене обмена вероятность получить $2X$ равна $1$, если игрок видит сумму $X=1$ и $\frac{11}{10}X$ в случае $X > 1$. Таким образом обмен выгоден в любом случае. Как такое возможно?
# Пусть $L$ - формальный язык. Докажите, что $(L^*)^* = L^*$
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = R^* \cup S^*$.
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cap S)^* = R^* \cap S^*$.
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = (R^*S^*)^*$.
# Пусть $R$ и $S$ - языки. Обозначим как $RS$ язык слов, представимых в виде конкатенации слова из $R$ и слова из $S$ (в этом порядке). Докажите или опровергните, что $(R\cup S)T=RT \cup ST$, $(R\cap S)T=RT \cap ST$.
# Пусть $L$ - язык. Обозначим как $Lc$ язык, который получается из $L$ дописыванием в конец каждому слову символа $c$. Обозначим как $Lc^{-1}$ язык, который получается из $L$ откидыванием всех слов, которые не заканчиваются на $c$, а затем у оставшихся слов откидыванием конечного символа $c$. Докажите или опровергните, что $(Lc)c^{-1}=L$, $(Lc^{-1})c=L$.
# Докажите или опровергните, что для любых трех языков $R$, $S$, $T$, где $T$ непуст., из $RT = ST$ следует $R = S$
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых четность числа 0 равна четности числа 1
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число единиц не кратно 3.
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых встречается подпоследовательность 001.
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых нет трех нулей подряд
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых есть три нуля подряд. Сделайте вывод из двух последних заданий.
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых есть три единицы подряд. Сделайте вывод из двух последних заданий.
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой двоичную запись чисел, кратных 5
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 и которые представляют собой двоичную запись чисел кратных 5.
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 или которые представляют собой двоичную запись чисел кратных 5. Сделайте вывод из последних двух заданий.
# Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых третий символ с конца равен последнему символу.
# Запишите регулярное выражение для слов над бинарным алфавитом, содержащих два нуля подряд.
# Запишите регулярное выражение для слов над бинарным алфавитом, содержащих не более одного места, где встречаются два нуля подряд.
# Запишите регулярное выражение для слов над бинарным алфавитом, не содержащих два нуля подряд.
# Запишите регулярное выражение для слов над бинарным алфавитом, не содержащих три нуля и не содержит три единицы подряд.
# Запишите регулярное выражение для слов над алфавитом $\{a, b, c\}$, содержащих нечетное число букв $a$.
# Запишите регулярное выражение для слов над бинарным алфавитом, задающих целое число в двоичной системе, не меньшее 51.
# Запишите регулярное выражение для слов над алфавитом $\{a, b, c\}$, содержащих хотя бы две буквы $a$ и хотя бы одну букву $b$.
# Запишите регулярное выражение для слов над бинарным алфавитом, которые представляют собой двоичную запись числа, кратного трем.
# Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых пятый символ с конца - единица.
# Докажите, что любой детерминированный автомат для языка слов над бинарным алфавитом, в которых $k$-й символ с конца равен 0, содержит как минимум $2^k$ состояний.
# Можно ли обобщить два предыдущих задания для любого размера алфавита $c$ следующим образом: построить семейство языков, для которых будут существовать НКА, содержащий $k$ состояний, но любые ДКА будут содержать $\Omega(c^k)$ состояний?
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой развернутую двоичную запись чисел, кратных 5 (сначала на вход подаются младшие разряды).
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой развернутую двоичную запись чисел, кратных 6 (сначала на вход подаются младшие разряды).
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины $d$ которые он допускает, за $O(dn)$.
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины $d$ которые он допускает, за $O(\log{(d)} \cdot poly(n))$ для некоторого полинома $poly$.
# Предложите для заданного ДКА размера $n$ алгоритм подсчета количества слов длины не больше $d$ которые он допускает, за $O(\log{(d)} \cdot poly(n))$ для некоторого полинома $poly$.
# Петя строит автомат для конкатенации языков $L_1$ и $L_2$ из автоматов для этих языков. Оказалось, что автомат для $L_1$ содержит только одно терминальное состояние и Петя просто объединил в одно это состояние и начальное состояние автомата для $L_2$. Всегда ли у Пети получится то, что нужно?
# Петя строит автомат для объединения языков $L_1$ и $L_2$ из автоматов для этих языков. Решив сэкономить, Петя просто объединил в одно начальные состояния автоматов для $L_1$ и $L_2$. Всегда ли у Пети получится то, что нужно?
# Петя строит автомат для замыкания Клини языка $L$. Решив сэкономить, Петя просто провёл $\varepsilon$-переход из каждого терминального состояния в начальное состояние, и сделал начальное состояние также терминальным. Всегда ли у Пети получится то, что нужно?
# Докажите нерегулярность языка палиндромов, если алфавит содержит хотя бы два символа. Что если алфавит унарный?
# Докажите нерегулярность языка тандемных повторов $L = \{ ww | w \in \Sigma^* \}$, если алфавит содержит хотя бы два символа. Что если алфавит унарный?
# Докажите нерегулярность языка $0^n1^m$, $n \le m$
# Докажите нерегулярность языка $0^n1^m$, $n \ne m$
# Докажите нерегулярность языка $0^{n^2}$
# Докажите нерегулярность языка $0^p$, $p$ {{---}} простое
# Докажите нерегулярность языка двоичных записей простых чисел
# Докажите нерегулярность языка $0^n1^m$, $gcd(n, m) = 1$
# Приведите пример нерегулярного языка, для которого выполнена лемма о разрастании
# Обозначим как $\min L$ множество слов $w \in L$, таких что никакой собственный префикс $w$ не является словом языка $L$. Докажите, что если $L$ регулярный, то и $\min L$ регулярный.
# Обозначим как $\max L$ множество слов $w \in L$, таких что $w$ не является собственным префиксом никакого словом языка $L$. Докажите, что если $L$ регулярный, то и $\max L$ регулярный.
# Обозначим как $\mbox{pref}\,L$ множество префиксов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{pref}\,L$ регулярный.
# Обозначим как $\mbox{suf}\,L$ множество суффиксов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{suf}\,L$ регулярный.
# Пусть $a$ и $b$ - слова равной длины $n$. Обозначим как $\mbox{alt}(a, b)$ слово $a_1b_1a_2b_2\ldots a_nb_n$. Для языков $R$ и $S$ обозначим как $\mbox{alt}(R, S)$ множество всех слов, которые получаются как $\mbox{alt}(a, b)$ где $a \in R$, $b \in S$. Докажите, что если $R$ и $S$ регулярные, то $\mbox{alt}(R, S)$ регулярный.
# Пусть $a$ и $b$ - слова. Обозначим как $\mbox{shuffle}(a, b)$ множество слов, которые можно составить, вставив в слово $a$ все буквы слова $b$ в том порядке, в котором они идут в $b$. Например, $\mbox{shuffle}(01, 23)=\{0123, 0213, 0231, 2013, 2031, 2301\}$. Для языков $R$ и $S$ обозначим как $\mbox{shuffle}(R, S)$ объединение всех множеств $\mbox{shuffle}(a, b)$ где $a \in R$, $b \in S$. Докажите, что если $R$ и $S$ регулярные, то $\mbox{shuffle}(R, S)$ регулярный.
# Обозначим как $\mbox{cycle}\,L$ множество циклических сдвигов слов языка $L$. Докажите, что если $L$ регулярный, то и $\mbox{cycle}\,L$ регулярный.
# Обозначим как $\mbox{half}\,L$ множество таких слов $a$, что существует слово $b$ такой же длины, как и $a$, что $ab \in L$. Докажите, что если $L$ регулярный, то и $\mbox{half}\,L$ регулярный.
# Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $ X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $ X + Y = Z $. Докажите, что этот язык регулярный.
# То же, что и предыдущее, только $\{x_{n-1} y_{n-1} z_{n-1} \dots x_1 y_1 z_1 x_0 y_0 z_0 \mid \dots \}$.
# Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $X \times Y = Z$. Докажите, что этот язык не является регулярным.
# Петя хочет решить уравнение в регулярных выражениях $L=\alpha L\xi+\beta$, где $\alpha$, $\beta$ и $\xi$ — регулярные выражения, а $L$ — неизвестный язык. Всегда ли решение будет регулярным языком?
# В этом и последующих заданиях регулярный язык подается на вход вашему алгоритму как ДКА, распознающий этот язык. Предложите алгоритм проверки того, что регулярный язык бесконечен.
# Предложите алгоритм подсчёта числа слов в регулярном языке (если язык бесконечен, алгоритм должен выдать информацию, что он бесконечен). Алгоритм должен работать за полином от числа состояний в автомате.
# Предложите алгоритм проверки того, что регулярный язык является беспрефиксным.
# Предложите алгоритм проверки того, что один регулярный язык является подмножеством другого.
# Предложите алгоритм проверки того, что регулярные языки не пересекаются.
# Предложите алгоритм проверки того, что объединение двух заданных регулярных языков совпадет с некоторым третьим заданным.
# Приведите пример регулярного языка и двух неизоморфных недетерминированных автоматов для него, которые при этом имеют минимальное число состояний среди всех недетерминированных автоматов для этого языка.
# Из алгоритма построения множества различимых состояний следует, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n^2)$. Докажите, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n)$.
# Правые контексты. Правым контекстом слова $x$ в языке $A$ называется множество $R_A(x)$ таких слов $y$, что $xy \in A$. Рассмотрим правые контексты всех слов $x \in \Sigma^*$. Докажите, что если число различных правых контекстов конечно, то язык $A$ является регулярным.
# Докажите, что если число различных правых контекстов бесконечно, то язык $A$ является нерегулярным.
# Докажите, что для регулярного языка $A$ число различных правых контекстов равно числу состояний минимального ДКА для этого языка.
# Левые контексты. Левым контекстом слова $x$ в языке $A$ называется множество $L_A(x)$ таких слов $y$, что $yx \in A$. Докажите, что язык $A$ регулярный тогда и только тогда, когда его множество левых контектов конечно.
# Пусть язык $A$ регулярен и распознается ДКА с $n$ состояниями. Оцените сверху число различных левых контекстов в языке $A$.
# Рассмотрим отношение на словах $L$: $x \equiv y$, если для любых $u$, $v$ выполнено $uxv \in L \Leftrightarrow uyv \in L$. Классы эквивалентности этого отношения называются синтаксическим моноидом языка $L$. Докажите, что если $L$ регулярный и его ДКА содержит $n$ состояний, то синтаксический моноид $L$ конечен и содержит не более $n^n$ классов эквивалентности.
# Придумайте семейство регулярных языков $L_i$, у которых ДКА для $L_i$ содержит $O(i)$ состояний, а синтаксический моноид $L_i$ имеет неполиномиальный размер.
# Вспомните/узнайте определение моноида. Почему конструкция из задания 183 названа моноидом, опишите группоидную операцию для нее.
# Постройте КС грамматику для правильных скобочных последовательностей с двумя типами скобок. В этом и следующих заданиях, после разработки КС грамматики необходимо выбрать в качестве примера слово и продемонстрировать его левосторонний вывод и дерево разбора.
# Постройте КС грамматику для языка $0^k 1^n 2^{k+n}$.
# Постройте КС грамматику для языка $0^n 1^m 2^m 3^n$.
# Постройте КС грамматику для языка $0^n 1^n 2^m 3^m$.
# (кроме 35, 34, 31) Докажите, что КС языки замкнуты относительно регулярных операций (объединение, конкатенация, замыкание Клини)
# Пусть задана КС-грамматика для языка $L$. Обозначим как $L^R$ язык, составленный из слов, которые, если их прочитать от конца к началу, принадлежат языку $L$. Укажите, как построить КС грамматику для языка $L^R$.
# Обозначим как $\mbox{pref}\,L$ множество префиксов слов языка $L$. Докажите, что если $L$ контекстно-свободный, то и $\mbox{pref}\,L$ контекстно-свободный.
# Постройте КС грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно удвоенному числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС грамматику для языка $0^i1^j2^k$, $i \ne j$ или $j \ne k$.
# Постройте КС грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются палиндромами.
# Постройте КС грамматику для языка слов над алфавитом $\{(, )\}$, которые не являются правильными скобочными последовательностями.
# Постройте КС грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей не равно числу единиц.
# Постройте КС грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются тандемными повторами (не имеют вид $xx$ для некоторого слова $x$).
# Постройте КС грамматику, описывающие академические регулярные выражения над алфавитом $\{0, 1\}$.
# КС грамматика называется линейной, если в правых частях правил встречается максимум один нетерминал. Праволинейные грамматики, в которых этот нетерминал находится на последнем месте, порождают регулярные языки. Приведите пример линейной грамматики, которая порождает нерегулярный язык.
# КС грамматика называется леволинейной, если в правых частях правил встречается максимум один нетерминал, причем если он есть, то находится на первом месте. Докажите, что язык можно породить леволинейной грамматикой тогда и только тогда, когда он регулярный.
# КС грамматика называется смешанной линейной, если в правых частях правил встречается максимум один нетерминал, причем если он есть, то находится либо на первом, либо на последнем месте. Докажите, что существует КС язык, не являющийся регулярным, который можно породить смешанной линейной грамматикой.

Навигация