Изменения

Перейти к: навигация, поиск

Список заданий по продвинутым алгоритмам 2021 осень

27 901 байт добавлено, 19:08, 4 сентября 2022
м
rollbackEdits.php mass rollback
# Обозначим как $BP(n)$ время умножения булевых матриц размера $n \times n$ над $\vee, \wedge$. Обозначим как $MM(n)$ время умножения целочисленных матриц размера $n \times n$ над $+, \times$. Докажите, что $BP(n) = O(MM(n))$.
# Докажите, что можно найти транзитивное замыкание графа за время $O(BP(n))$.
# Пусть $A$ и $B$ - матрицы размера $n \times n$. Пусть $R \subset \{1, 2, \ldots, n\}$, $|R|=r$. Обозначим как $A^R$ матрицу, которая получается из $A$ удалением всех столбцов, кроме столбцов из множества $R$. Аналогично, обозначим как $B_R$ матрицу, которая получается из $B$ удалением всех строк, кроме строк из множества $R$. Докажите, что произведение матриц $A_RA^R\cdot B_R$ может быть найдено за время $O((n/r)^2 MM(r))$, где $MM(r)$ - время умножения матриц размером $r\times r$.
# Пусть $MM(n)=2+\varepsilon$, $\varepsilon>0$. Модифицируйте алгоритм построения BPWM, чтобы он работал за $MM(n) \log n$. Почему эта идея не сработает, если $MM(n) = O(n^2)$?
# Докажите лемму с лекции про то, что если в урне $n$ шаров, из которых $w$ белых и $n/2\le wr \le n$, а событие $A$ означает, что из $r$ наугад выбранных из урны шаров оказался ровно один белый, то $P(A) \ge 1/2e$.
# Вероятностный алгоритм проверки некоторого предиката от входных данных размера $n$ работает за полином $p(n)$ и дает верный ответ с вероятностью $1/2$. Можно ли найти верный ответ с вероятностью $99/100$ за полином от $n$?
# Вероятностный алгоритм проверки некоторого предиката от входных данных размера $n$ работает за полином $p(n)$ и дает верный ответ с вероятностью $2/3$. Как найти верный ответ с вероятностью $99/100$ за полином от $n$?
# В алгоритме Кинг с лекции обозначим как $f(u)$ лист, которая получается в ветвящемся дереве $T'$ из вершины $u$ в исходном дереве $T$. Докажите, что если вес максимального ребра на пути из $u$ в $v$ в $T$ равен $x$, а вес максимального ребра на пути из $f(u)$ в $f(v)$ в $T'$ равен $x'$, то $x \ge x'$.
# В условиях предыдущей задачи докажите, что то $x \le x'$.
# Рассмотрим ветвящееся дерево, пусть в нем $n$ вершин. Пусть есть $m$ запросов на пары листьев, для которых необходимо найти максимальное ребро на пути. Разобьем каждый запрос на два запроса на вертикальном пути до $LCA$ этих листьев, таким образом имеем $2m$ вертикальных путей. Для вершины $v$ обозначим как $A(v)$ множество вертикальных путей, проходящих через $v$. Обозначим как $D_i$ множество вершин на расстоянии $i$ от корня, как $d_i$ число вершин на расстоянии $i$ от корня ($d_i=|D_i|$). Докажите, что $\sum\limits_{u\in D_i}\lceil\log(1+|A(u)|)\rceil<\sum\limits_{u\in D_i}\left(1+\log(1+|A(u)|)\right)\le d_i+d_i \log\frac{d_i+2m}{d_i}$.
# В условиях предыдущей задачи докажите, что $\sum\limits_{i\ge 0}\left(d_i + d_i\log\frac{d_i+2m}{d_i}\right)\le n+n\log\frac{n+2m}{n}+2n$.
# Докажите, что $\sum\limits_{u}\lceil\log(1+|A(u)|)\rceil = O(n + m)$.
# Обозначим как $A[v]$ число, в котором $i$-й бит равен $1$, если в $A(v)$ есть путь, заканчивающийся на расстоянии $i$ от корня. Считайте, что вы можете решить задачу о $m$ запросах $LCA$ в дереве с $n$ вершинами за $O(n+m)$ (например, используя алгоритм Фарах-Колтона и Бендера, см https://www.ics.uci.edu/~eppstein/261/BenFar-LCA-00.pdf). Объясните, как посчитать $A[v]$ за время $O(n+m)$.
# Назовем вершину $v$ большой, если $|A(v)| > \log n/\log\log n$ и маленькой в противном случае. Докажите, что число больших вершин асимптотически не превышает $m /\log\log n$. Указание: оцените число больших вершин на каждом уровне дерева. Отдельно рассмотрите большие вершины на нижних $\log\log n$ и на остальных уровнях.
# Для вершины $v$, для которой $|A(v)| = k$ рассмотрим фрагменты путей, лежащие выше вершины $v$. Будем хранить $B(v) = [l_1, l_2, \ldots, l_k]$ - список глубин самых тяжелых ребер на фрагментах путях, проходящих через $v$, в порядке от самого длинного пути к самому короткому. Иначе говоря, пронумеруем пути из $A(v)$ в порядке возрастания глубины их верхней вершины. Тогда $l_i$ - расстояние от корня до ребра, которое является самым тяжелым на пути от $v$ до некоторой вершины $u_i$, которая является верхним концом $i$-го пути. Числа $l_i$ называются тагами, длина тага $O(\log\log n)$. Докажите, что массив $B(v)$ отсортирован по неубыванию.
# Пусть $p$ - родитель вершины $v$, как связаны массивы $B(p)$ и $B(v)$? Дайте подробное описание, используя, при необходимости, $A(p)$ и $A(v)$.
# Для больших вершин $B(v)$ помещается в $O(\log\log n)$ машинных слово. Пусть родитель вершины также большой. Предложите алгоритм пересчета $B(v)$ через $B(p)$, $A[p]$ и $A[v]$ за $O(\log\log n)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$.
# Обозначим как $bigp[v]$ максимальную глубину, на котором находится большой предок вершины $v$. Предложите алгоритм, как за построить массив $bigp$ по массиву $A$ за $O(n)$.
# Для маленьких вершин $B(v)$ помещается в машинное слово, однако вместо списка $B(v)$ будем хранить вспомогательный список $C(v)$, устроенный так. Если самое тяжелое ребро на $i$-м по глубине пути из $A(v)$ находится ниже, чем $bigp[v]$, то будем хранить просто $l_i$. Иначе будем хранить $z_i$ - номер $l_i$ в $B(bigp[v])$. Обозначим упакованный в машинное слово список $C(v)$ за $C[v]$. Предложите алгоритм пересчета $С[v]$ за $O(1)$, перед этим можно выполнить общий для всех вершин предподсчет за $O(n+m)$. Вы можете использовать посчитанные для родителей и предков $C[u]$, $B(u)$, $A[u]$, $bigp[u]$.
# Объедините результаты всех предыдущих заданий, чтобы получить алгоритм обработки $m$ запросов поиска максимального ребра на пути между двумя вершинами на дереве за $O(n+m)$.
# Покажите, как свести задачу поиска минимального разреза в графе к $O(n)$ запускам алгоритма поиска минимального $s-t$ разреза.
# Покажите, как свести задачу поиска минимального $s-t$ разреза в графе к полиномимальному числу запусков алгоритма поиска глобального минимального разреза.
# Петя хочет упростить алгоритм Каргера-Штайна. Он запускает алгоритм Каргера (стягивание по случайному ребру), пока количество вершин не станет равно $t$, а затем запускает алгоритм за $t^3$ поиска минимального глобального разреза. Затем он повторяет алгоритм, пока вероятность успеха не составит хотя бы $1/2$. Какое значение $t$ необходимо выбрать, чтобы минимизировать время работы получившегося алгоритма? Какое будет время работы?
# Докажите, что если в полном двоичном дереве высоты $h$ каждое ребро удаляется с вероятностью $1/2$, то путь от корня до листа сохраняется с вероятностью $\Theta(1/h)$.
# Обобщите предыдущее задание, если ребро удаляется с вероятностью $p$.
# С учетом предыдущего задания модифицируйте алгоритм Каргера-Штайна, чтобы разветвляться когда накопленная вероятность ошибки достигнет $p$. Найдите зависимость времени работы от $p$, какое значение $p$ оптимально выбрать?
# Назовем разрез $\alpha$-оптимальным, если его размер не больше $\alpha C_{min}$, где $C_{min}$ - минимальный разрез. Оцените вероятность, что один запуск алгоритма Каргера (без разветвлений) найдет $\alpha$-оптимальный разрез (в зависимости от $\alpha$).
# Докажите, что в графе не больше $n\choose 2$ различных минимальных глобальных разрезов.
# Сформулируйте и докажите аналогичный предыдущему заданию результат для $\alpha$-оптимальных разрезов.
# Докажите, что для полинома $p(x_1, \ldots, x_n)$ от $n$ переменных степени $d$ над полем $F$ и множества $S\subset F$ размера $s$ вероятность $P(p(x_1, \ldots, x_n)=0)\le d/s$, где вероятностное пространство - равновероятно все вектора $(x_1, \ldots, x_n)\in S^n$. Используйте без доказательства, что полином от одной переменной степени $d$ над любым полем имеет не более $d$ корней.
# Покажите, что требование, что $F$ поле в предыдущей задаче является существенным, приведите пример полинома степени $d$ над кольцом, которое не является полем, имеющего более $d$ корней.
# Покажите, что в определении PRAS можно заменить константу $3/4$ в требовании, что вероятность попасть в интервал $[1-\varepsilon;1+\varepsilon]$ должна быть $3/4$, на любое другое число, строго большее $1/2$.
# Можно ли в предыдущем задании заменить $1/2$ на $0$?
# Можно ли в решении задания 73 брать среднее значение в качестве оценки?
# Рассмотрим формулу в ДНФ. Обозначим как $t$ количество пар $($терм$,$ удовлетворяющее этот терм назначение переменных$)$. Выберем случайно терм, где вероятность выбрать терм пропорциональна числу удовлетворяющих этот терм назначений. Выберем случайное назначение $a$, удовлетворяющее этот терм. Рассмотрим случайную величину $X = t/cov(a)$, где $cov(a)$ - число термов, удовлетворенных назначением $a$. Докажите, что $EX = Y$, где $Y$ - число удовлетворяющих назначений заданной формулы.
# На базе предыдущего задания предложите альтернативный алгоритм апроксимации числа удовлетворяющих назначений ДНФ.
# Рандомизированный алгоритм для 2SAT. Рассмотрим следующий алгоритм решения задачи удовлетворимости булевой формулы в 2КНФ с $n$ переменными. Выберем случайное значение каждой переменной. Если формула не удовлетворена, выберем случайный не удовлетворенный клоз и инвертируем значение случайной переменной в нем. Докажите, что если удовлетворяющее назначение существует, оно будет найдено за $O(n^2)$ шагов. Указание: зафиксируйте любое удовлетворяющее формулу назначение и рассмотрите задачу как случайное блуждание по прямой, где координата - это число переменных, значение которых совпадает с значением в выбранном назначении.
# Почему алгоритм из предыдущего задания не работает для 3SAT?
# Докажите, что оценку из задания 78 нельзя улучшить: предложите формулу, для которой в среднем понадобится $\Omega(n^2)$ случайных шагов для поиска удовлетворяющего назначения.
# Предложите аналогичный заданию 78 алгоритм поиска раскраски графа в два цвета.
# Почему алгоритм из предыдущего задания не работает для поиска раскраски графа в три цвета?
# Обозначим как $m_k(G)$ количество паросочетаний размера $k$ в двудольном графе $G$, каждая доля которого содержит по $n$ вершин. Пусть граф содержит больше $k$ ребер. Докажите, что существует ребро $uv$, такое что $m_k(G)/m_k(G\setminus uv) \le n$.
# Пусть вероятностный алгоритм $U_k$ получает на вход граф $G$ и выдает случайное паросочетание в $G$ размера $k$, причем все паросочетания равновероятны. Покажите, как с использованием $U_k$ получить $\varepsilon$-$\delta$-FRPAS для доли паросочетаний, содержащих заданное ребро $uv$ в графе $G$.
# Покажите, как с использованием $U_k$ из предедыдущего задания получить $\varepsilon$-$\delta$-FRPAS для числа $m_k(G)$.
# Будем называть полиномиальный вероятностный алгоритм $U_k$ равномерным с точностью до $\rho$ генератором, если он получает на вход граф $G$ и выдает случайное паросочетание в $G$ размера $k$, причем для любого паросочетания $M$ $|P(U_k(G)=M) - 1/m_k(G)| \le \rho/m_k(G)$. Пусть $\rho \le 1/n^b$ для некоторого $b$. Подберите константу $b$, чтобы можно было решить задание 84, используя равномерный с точностью до $\rho$ генератор.
# Подберите константу $b$, чтобы можно было решить задание 85, используя равномерный с точностью до $\rho$ генератор.
# Пусть полиномиальный вероятностный алгоритм $\hat U_k$ получает на вход граф $G$ и выдает случайное паросочетание в $G$ размера $k$ или $k-1$, причем все паросочетания равновероятны. Пусть $r = m_k(G)/m_{k-1}(G)$ удовлетворяет условию $1/n^2 \le r \le n^2$. Докажите, что с помощью $\hat U_k$ можно получить $\varepsilon$-$\delta$-FRPAS для $m_k(G)$.
# Подберите константу $b$, чтобы можно было решить задание 88, используя равномерный с точностью до $\rho \le 1/n^b$ генератор.
# Докажите, что если степень любой вершины в графе не меньше $n/2$, то выполнено условие $1/n^2 \le r \le n^2$ для задания 88.
# Соедините предыдущие задания, чтобы получить из существования равномерного с точностью до $\rho \le 1/n^b$ генератора $\hat U_k$ для любого $k$ $\varepsilon$-$\delta$-FPRAS для числа совершенных паросочетаний в двудольном графе, где степени всех вершин не меньше $n/2$.
# Рассмотрим $\varepsilon$-$\delta$-FPRAS $A$ для числа паросочетаний в двудольном графе. Используя $A$, постройте полиномиальный вероятностный алгоритм, который является равномерным генератором с точностью до $\rho = o(1)$.
# Пусть существует полиномиальный детерминированный алгоритм, который возвращает число совершенных паросочетаний в двудольном графе, степень каждой вершины которого равна хотя бы $\beta n$, где $0 < \beta < 1$. Докажите, что существует полиномиальный детерминированный алгоритм, который возвращает число совершенных паросочетаний в произвольном двудольном графе.
# Рассмотрим алгоритм приближения числа $\pi$. Будем генерировать точки с равномерным распределением в квадрате $1 \times 1$ и считать долю попавших в круг диаметром 1, вписанный в этот квадрат. Оцените число итераций, необходимое, чтобы приблизить $\pi$ с точностью до $\varepsilon$.
# Пусть матрица переходов эргодической марковской цепи является дважды стохастической (сумма элементов каждого столбца также равна 1). Докажите, что стационарное распределение $(1/n, 1/n, \ldots, 1/n)$.
# Пусть матрицы $A$ и $B$ имеют один и тот же собственный вектор $x$ для собственных чисел $\lambda$ и $\mu$, соответственно. Докажите, что $x$ является собственным вектором для $A+B$. Для какого собственного числа?
# Задача приблизительного подсчета числа вхождений. Biased Sketch. Рассмотрим алгоритм: выберем случайную хеш-функцию $h: U\to \{0,1, \ldots, m-1\}$ из универсального семейства. Заведем счетчик $cnt[0\ldots m-1]$ и в качестве операцими $update(x)$ будем делать $cnt[h(x)]$++, а в качестве $query(x)$ будем возвращать $cnt[h(x)]$. Пусть выполнено $n$ запросов $update$. Обозначим как $a(x)$ количество вхождений числа $x$. Оцените $P(query(x) > a(x) + \varepsilon n)$.
# CountMin. В предыдущей задаче чтобы лучше оценить количество, будем использовать несколько хеш-функций. Пусть мы используем $r$ хеш-функций, для каждой свой массив $cnt_i$, в качестве ответа на запрос будем выдавать $\min(cnt_i[h_i(x)])$. Какое $r$ необходимо выбрать, чтобы выполнялось $P(query(x) > a(x) + \varepsilon n) < \delta$?
# Задача приблизительного подсчета числа вхождений. Unbiased Sketch. Рассмотрим алгоритм: выберем случайную хеш-функцию $h: U\to \{0,1, \ldots, m-1\}$ из универсального семейства, а также случайную знаковую функцию $s: U \to \{-1,1\}$. Заведем счетчик $cnt[0\ldots m-1]$ и в качестве операцими $update(x)$ будем делать $cnt[h(x)]$ += s(x), а в качестве $query(x)$ будем возвращать $cnt[h(x)]\cdot s(x)$. Пусть выполнено $n$ запросов $update$. Обозначим как $a(x)$ количество вхождений числа $x$. Докажите, что $D[query(x)] \le \frac{1}{m}\sum_y a(y)^2$.
# В условиях предыдущей задачи обозначим как $\lVert a \rVert_2 = \sqrt{\sum_x a(x)^2}$. Оцените $P(|query(x) - a(x)| > \varepsilon \lVert a \rVert_2)$.
# CountSketch В предыдущей задаче чтобы лучше оценить количество, будем использовать несколько хеш-функций. Пусть мы используем $r$ хеш-функций, для каждой свой массив $cnt_i$, в качестве ответа на запрос будем выдавать $median(cnt_i[h_i(x)])$. Какое $r$ необходимо выбрать, чтобы выполнялось $P(|query(x) - a(x)| > \varepsilon \lVert a \rVert_2) < \delta$?
# Сравните оценки по времени, памяти и точности для CountMin и CountSketch. Сделайте вывод, когда какой из них лучше.
# Поиск $k$ самых частых. Используем тот или иной аппроксимационный алгоритм (CountMin или CountSketch), мы хотим найти $k$ самых частых элементов в последовательности $a_1, \ldots, a_n$. Будем поддерживать $set$ из $k$ самых частых, упорядоченный по оценке на число их вхождений. Рассматривая очередной элемент, добавляем его в set, если его оценка на число вхождений становится больше, чем у самого редкого в $set$-е. Оцените вероятность, что для всех $x$ в $set$-е в конце выполнено $a(x) \ge (1-\varepsilon)a(y)$, где $y$ - это $k$-й по частоте встречаемости элемент.
# Доминирующий элемент. Рассмотрим алгоритм, который ищет элемент, который встречается хотя бы $n/2$ раз в потоке $[a_1, \ldots, a_n]$. Пусть $0 \le a_i < N$ и $N \ge 2n$. Докажите, что детерминированный алгоритм, использующий $o(n\log(N/n))$ бит, не может решить поставленную задачу. Указание: рассмотрите состояние после половины элементов потока.
# Предложите алгоритм, использующий $O(\log(N+n))$ бит, который решает предыдущую задачу в предположении, что доминирующий элемент существует.
# Обобщите предыдущий алгоритм на случай $\varepsilon$-частых элементов: будем называть элемент $\varepsilon$-частым, если он составляет хотя бы $\varepsilon$ долю элементов во вводе. Как зависит память от $\varepsilon$?
# Все различные. Докажите или опровергните, что любой детерминированный алгоритм, который всегда корректно отвечает, верно ли, что все элементы во вводе $[a_1, a_2, \ldots, a_n]$ различны, должен использовать хотя бы $\Omega(n\log(2N/n))$ памяти.
# Недостающий элемент. Задан массив $[a_1, a_2, \ldots, a_{n-1}$, где все элементы от $1$ до $n$, кроме одного, встречаются ровно один раз. Найдите недостающий элемент, используя $O(\log n)$ памяти.
# Два недостающих элемента. Задан массив $[a_1, a_2, \ldots, a_{n-2}$, где все элементы от $1$ до $n$, кроме двух, встречаются ровно один раз. Найдите недостающие элементы, используя $o(n)$ памяти.
# Задана правильная скобочная последовательность с $n$ открывающими скобками. Рассмотрим четыре операции: findclose($i$) - найти закрывающую парную скобку для открывающей скобки на позиции $i$, findopen($i$) - найти открывающую парную скобку для закрывающей на позиции $i$, enclose($i$) - найти позицию открывающей скобки для пары скобок, непосредственно внутри которой находится открывающая скобка на позиции $i$, balance($i$) - найти баланс на позиции $i$. Используйте с rank и select с лекции, чтобы вычислить balance за $O(1)$ и $o(n)$ дополнительной памяти.
# Используйте balance и идеи с лекции, чтобы реализовать $findclose$, $findopen$ и $enclose$.
# Задано дерево (не обязательно двоичное) с порядком на детях. Для представления дерева используется правильная скобочная последовательность: запись вершины $u$ с детьми $v_1, v_2, \ldots, v_k$, обозначенная как $R(u)$ устроена так: $R(u) = (R(v_1)R(v_2)\ldots R(v_l))$. Опишите с помощью операций из задачи 110 операции: перехода к родителю, перехода к первому ребенку, перехода к следующему ребенку.
# Размер поддерева. Опишите с помощью операций из задачи 110 способ узнать размер поддерева для заданной вершины.
# Глубина вершины. Опишите с помощью операций из задач 110 способ узнать глубину вершины.
# Опишите в терминах скобочных последовательностей операцию LCA. Предложите решение за $O(1)$ и $o(n)$ дополнительной памяти.
1632
правки

Навигация