Изменения

Перейти к: навигация, поиск

Список заданий по продвинутым алгоритмам 2022 осень

2718 байт добавлено, 21:26, 28 октября 2022
Нет описания правки
# Докажите, что в графе не больше $n\choose 2$ различных минимальных глобальных разрезов.
# Сформулируйте и докажите аналогичный предыдущему заданию результат для $\alpha$-оптимальных разрезов.
# Дерево Кинг. Дано взвешенное дерево $T$. Запустим на дереве $T$ алгоритм Борувки, когда множество вершин $S$ объединяется в новую вершину $s$ для каждой вершины из $u$ добавим ребро из $u$ в $s$ с весом, равным минимальному весу ребра, инцидентного $u$ на этом шаге (того ребра, которое выбирает алгоритм Борувки). Докажите, что задача максимума на пути между листьями в полученном дереве эквивалентна задаче максимума на пути в исходном дереве $T$.
# Рассмотрим ветвящееся дерево (у каждой внутренней вершины хотя бы два сына, все листья на одном уровне), пусть в нем $n$ вершин. Пусть есть $m$ запросов на пары листьев, для которых необходимо найти максимальное ребро на пути. Разобьем каждый запрос на два запроса на вертикальном пути до $LCA$ этих листьев, таким образом имеем $2m$ вертикальных путей. Для вершины $v$ обозначим как $A(v)$ множество вертикальных путей, проходящих через $v$. Обозначим как $D_i$ множество вершин на расстоянии $i$ от корня, как $d_i$ число вершин на расстоянии $i$ от корня ($d_i=|D_i|$). Докажите, что $\sum\limits_{u\in D_i}\lceil\log(1+|A(u)|)\rceil<\sum\limits_{u\in D_i}\left(1+\log(1+|A(u)|)\right)\le d_i+d_i \log\frac{d_i+2m}{d_i}$.
# В условиях предыдущей задачи докажите, что $\sum\limits_{i\ge 0}\left(d_i + d_i\log\frac{d_i+2m}{d_i}\right)\le n+n\log\frac{n+2m}{n}+2n$.
# Докажите, что $\sum\limits_{u}\lceil\log(1+|A(u)|)\rceil = O(n + m)$.
# Готовимся к алгоритму линейной верификации MST. Введем операцию на множествах целых чисел: $A \downarrow B = \{b \in B | \exists a \in A : a < b \mbox{ and there is no } b′ \in B \mbox{ with } a < b′ < b\}$. Докажите, что $A\downarrow B \subset B$, $|A \downarrow B| \le |A|$, $(A\cup B)\downarrow C = (A \downarrow C) \cup (B \downarrow C)$, $A \downarrow (B \cup C) \subset (A \downarrow B) \cup (A \downarrow C)$.

Навигация