Изменения

Перейти к: навигация, поиск

Список заданий по теории сложности 2020

1175 байт добавлено, 14:37, 1 июня 2020
Нет описания правки
# Часть 3. Рассмотрим $\mathrm{perm}(D_A(x))$. Докажите, что он является полиномом от $x$. Какой степени?
# Часть 4. На основании предыдущих трех заданий и конструкции интерактивного доказательства для $\#SAT$ разработайте интерактивное доказательство для языка $\langle A, k\rangle$, где $\mathrm{perm}A = k$.
# Докажите, что следующая конструкция является универсальным семейством попарно независимых хеш-функций $\mathbb{B}^n \to \mathbb{B}^k$. Рассмотрим все матрицы $A$ размера $k \times n$ из нулей и единиц, а также все вектора длины $k$. Все вычисления выполняются по модулю 2. Для каждой пары матрицы-вектор определим хеш-функцию $h(x) = Ax+b$.
# Докажите, что если $S \subset \mathbb{B}^n$, $h$ случайно равновероятно выбрана из универсального семейства попарно независимых хеш функций, $\mathbb{B}^n \to \mathbb{B}^k$, $|S| \le 2^{k-1}$, $p = |S|/2^k$, $y$ выбран случайно равновероятно из множества $\mathbb{B}^k$, то $3p/4\le \mathbb{P}(\exists x\in S: h(x)=y)\le p$.
# Докажите, что если либо $|S| = a$, либо $|S| = a/2$, $k$ равно минимальному целому числу, для которого $a \le 2^{k-1}$, то существуют различные константы $c_1 < c_2$, такие что выполнено следующее. Если $h$ случайно равновероятно выбрана из универсального семейства попарно независимых хеш функций, $\mathbb{B}^n \to \mathbb{B}^k$, $y$ выбран случайно равновероятно из множества $\mathbb{B}^k$, то если $|S| = a$, то $\mathbb{P}(\exists x\in S: h(x)=y)\ge c_2$, а если $|S| = a/2$, то $\mathbb{P}(\exists x\in S: h(x)=y)\le c_1$.
# Завершите доказательство корректности протокола большого множества, который позволяет различать случаи $|S| = a$ и $|S| = a/2$.
# Назовём язык $L$ самосводимым, если $L \in P^{L^{<n}}$, (обозначение $L^{<n}$ означает, что все вопросы к оракулу имеют длину строго меньше $n$, где $n$ - длина входа). Докажите, что $SAT$ является самосводимым.
# Докажите, что если $L$ самосводим, то $L \in PSPACE$.
# Докажите, что любой язык из $NP$ является самосводимым.
# Следует ли из доказательства предыдущего задания, что для любого языка $L \in NP$ и функции проверки сертификатов $R(x, y)$ при условии доступа к оракулу для $L^{<n}$ можно по $x$ за полиномиальное время построить сертификат $y$?
# Докажите, что следующая конструкция является универсальным семейством попарно независимых хеш-функций $\mathbb{B}^n \to \mathbb{B}^k$. Рассмотрим все матрицы $A$ размера $k \times n$ из нулей и единиц, а также все вектора длины $k$. Все вычисления выполняются по модулю 2. Для каждой пары матрицы-вектор определим хеш-функцию $h(x) = Ax+b$.
# Докажите, что если $S \subset \mathbb{B}^n$, $h$ случайно равновероятно выбрана из универсального семейства попарно независимых хеш функций, $\mathbb{B}^n \to \mathbb{B}^k$, $|S| \le 2^{k-1}$, $p = |S|/2^k$, $y$ выбран случайно равновероятно из множества $\mathbb{B}^k$, то $3p/4\le \mathbb{P}(\exists x\in S: h(x)=y)\le p$.
# Докажите, что если либо $|S| = a$, либо $|S| = a/2$, $k$ равно минимальному целому числу, для которого $a \le 2^{k-1}$, то существуют различные константы $c_1 < c_2$, такие что выполнено следующее. Если $h$ случайно равновероятно выбрана из универсального семейства попарно независимых хеш функций, $\mathbb{B}^n \to \mathbb{B}^k$, $y$ выбран случайно равновероятно из множества $\mathbb{B}^k$, то если $|S| = a$, то $\mathbb{P}(\exists x\in S: h(x)=y)\ge c_2$, а если $|S| = a/2$, то $\mathbb{P}(\exists x\in S: h(x)=y)\le c_1$.
# Завершите доказательство корректности протокола большого множества, который позволяет различать случаи $|S| = a$ и $|S| = a/2$.
# Протокол большого множества можно модифицировать, чтобы если множество большое, Prover мог добиться, чтобы Verifier принимал с вероятностью 1. Из каких компонент сложить решение: пусть $S \subset \mathbb{B}^n$, $|S| = a$ или $|S| = a/c$, где $c$ - параметр, который выберем позже, $H$ - универсальное семейство попарно независимых хеш-функций из $\mathbb{B}^n в $\mathbb{B}^k$. Можно выбрать такое $c$ и такое $t$, полиномиальное от $n$, что если $|S| = a$, то существуют $t$ хеш-функций $h_1, \ldots, h_t$, что $\cup h_i(S) = \mathbb{B}^k$, а если $|S| = a/c$, то для любых $t$ хеш-функций $|\cup h_i(S)| < 2^{k-1}$. При этом $c$ можно менять, рассматривая вместо $S$ множество $S^z$ для целого $z$. Совет: вспомнить доказательство теоремы Лаутемана.
Анонимный участник

Навигация