Редактирование: Список с пропусками

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 15: Строка 15:
 
====Псевдокод====
 
====Псевдокод====
  
Каждый уровень списка с пропусками содержит отсортированный односвязный список, у которого есть начало <tex>\mathtt{head} \ </tex> и конец <tex>\mathtt{tail}</tex>. Для выполнения операций на списке с пропусками необходимо передавать в качестве аргумента ссылку на начало односвязного списка, расположенного на самом верхнем уровне.
+
Каждый уровень списка с пропусками содержит отсортированный односвязный список, у которого есть начало <tex>\mathtt{head}</tex> и конец <tex>\mathtt{tail}</tex>. Для выполнения операций на списке с пропусками необходимо передавать в качестве аргумента ссылку на начало односвязного списка, расположенного на самом верхнем уровне.
  
 
Элементы односвязного списка — вершины <tex>\mathtt{node}</tex>, у которых есть <tex>3</tex> поля:
 
Элементы односвязного списка — вершины <tex>\mathtt{node}</tex>, у которых есть <tex>3</tex> поля:
* <tex>\mathtt{next}</tex> — ссылка на следующий элемент списка на данном уровне
+
* <tex>\mathtt{next}</tex> — ссылка на следующий элемент списка
 
* <tex>\mathtt{key}</tex> — ключ, который хранится в данной вершине
 
* <tex>\mathtt{key}</tex> — ключ, который хранится в данной вершине
 
* <tex>\mathtt{down}</tex> — ссылка на соответственный элемент, лежащий уровнем ниже
 
* <tex>\mathtt{down}</tex> — ссылка на соответственный элемент, лежащий уровнем ниже
  
    '''struct''' node:
+
Также известно, что <tex>\mathtt{head{.}key} = -\infty \ </tex> и <tex>\mathtt{tail{.}key} = \infty</tex>.
        '''node''' next, down
 
        '''K''' key
 
 
 
Также известно, что <tex>\mathtt{head{.}key} = -\infty \ </tex> и <tex>\mathtt{tail{.}key} = \infty</tex>,
 
  
 
Функция <tex>\ \mathtt{build\_lvl} \ </tex> возвращает новый уровень списка с пропусками на основе предыдущего построенного уровня.
 
Функция <tex>\ \mathtt{build\_lvl} \ </tex> возвращает новый уровень списка с пропусками на основе предыдущего построенного уровня.
  
 
     '''list''' build_lvl('''list''' lvl)                   
 
     '''list''' build_lvl('''list''' lvl)                   
         '''list''' next_lvl
+
         '''list''' next_lvl  
        next_lvl.head.down = lvl.head
 
        next_lvl.tail.down = lvl.tail
 
 
         '''node''' i = lvl.head.next.next                       
 
         '''node''' i = lvl.head.next.next                       
 
         '''node''' cur = next_lvl.head  
 
         '''node''' cur = next_lvl.head  
Строка 65: Строка 59:
 
В конце алгоритма функция вернёт элемент, значение которого не меньше ключа <tex>\mathtt{key}</tex> или ссылку на конец списка на первом уровне.
 
В конце алгоритма функция вернёт элемент, значение которого не меньше ключа <tex>\mathtt{key}</tex> или ссылку на конец списка на первом уровне.
  
Если в качестве случайного источника мы будем использовать честную монету, то в среднем случае будет <tex>\log{n}</tex> уровне. На самом верхнем уровне будет не более двух элементов. Тогда на каждом уровне в среднем нужно проверить не более двух элементов (в противном случае могли бы вместо двух нижних элементов проверить ещё один уровнем выше). Если же у нас будет <tex>k</tex> уровней, тогда на каждом уровне в среднем будет в <tex>n^{1/k}</tex> раз элементов больше, чем уровнем выше. В таком случае время поиска элемента <tex>-</tex> <tex>O(k \cdot n^{1/k})</tex>.
+
Если в качестве случайного источника мы будем использовать честную монету, то в среднем случае будет <tex>\log{n}</tex> уровне. На самом верхнем уровне будет не более двух элементов. Тогда на каждом уровне в среднем нужно проверить не более двух элементов (в противном случае могли бы вместо двух нижних элементов проверить ещё один уровнем выше). Уровней всего <tex>\log{n}</tex>, откуда вытекает оценка времени поиска элемента в <tex>O(\log{n})</tex>.
  
 
====Псевдокод====
 
====Псевдокод====
Строка 89: Строка 83:
 
# Кидаем монетку и если выпал «Орёл», то возвращаем ссылку на текущий элемент, иначе — ''null''. Если мы были не на первом уровне и нам вернули ''null'' — возвращаем его без броска монетки.
 
# Кидаем монетку и если выпал «Орёл», то возвращаем ссылку на текущий элемент, иначе — ''null''. Если мы были не на первом уровне и нам вернули ''null'' — возвращаем его без броска монетки.
  
Отдельно стоит обработать случай, когда вставка нового элемента увеличивает число уровней. Тогда необходимо создать ещё один отсортированный список, в котором будет всего один текущий элемент, и не забыть присвоить списку с пропусками новую ссылку на верхний уровень. Будем считать, что вставка каждого нового элемента увеличивает число уровней не более чем на один.
+
Отдельно стоит обработать случай, когда вставка нового элемента увеличивает число уровней. Тогда необходимо создать ещё один отсортированный список, в котором будет всего один текущий элемент, и не забыть присвоить списку с пропусками новую ссылку на верхний уровень. Будем считать, что вставка каждого нового элемента увеличивает число уровней не более, чем на один.
 
 
Заметим, что вставка элемента <tex>-</tex> поиск элемента и за <tex>O(1)</tex> добавляем не более, чем в <tex>k</tex> уровней элемент. Итого время работы <tex>O(k \cdot n^{1/k})</tex>.
 
  
 
====Псевдокод====
 
====Псевдокод====
Строка 106: Строка 98:
 
         '''if''' down_node <tex>\neq</tex> ''null'' '''or''' res.down = ''null''                <font color=darkgreen>// Если выпал «Орёл» или мы находимся на первом уровне</font>
 
         '''if''' down_node <tex>\neq</tex> ''null'' '''or''' res.down = ''null''                <font color=darkgreen>// Если выпал «Орёл» или мы находимся на первом уровне</font>
 
             res.next = node(key, down_node, res.next)
 
             res.next = node(key, down_node, res.next)
             '''if''' coin_flip() = ''head''                             <font color=darkgreen>// Если выпал «Орёл»</font>
+
             '''if''' random(0, 1) > 0.5                             <font color=darkgreen>// Бросок монеты</font>
 
                 '''return''' res.next
 
                 '''return''' res.next
 
             '''return''' ''null''
 
             '''return''' ''null''
Строка 136: Строка 128:
 
             res.next = res.next.next
 
             res.next = res.next.next
  
Аналогично со вставкой удаление <tex>-</tex> поиск элемента за <tex>O(k \cdot n^{1/k})</tex> плюс удаление на каждом уровне за <tex>O(1)</tex>. Итого <tex>-</tex> <tex>O(k \cdot n^{1/k})</tex>.
+
Для того, чтобы удалить элемент <tex>\mathtt{key}</tex> из списка с пропусками <tex>\mathtt{skip} \ </tex> необходимо вызвать функцию <tex>\mathtt{delete} \ </tex> следующим образом:
 
 
Для того, чтобы удалить элемент <tex>\mathtt{key}</tex> из списка с пропусками <tex>\mathtt{skip}</tex>, необходимо вызвать функцию <tex>\mathtt{delete} \ </tex> следующим образом:
 
  
 
     delete(skip.head, key)
 
     delete(skip.head, key)
  
 
==Использование нечестной монеты==
 
==Использование нечестной монеты==
Вместо честной монеты с распределением <tex>\left\{\dfrac{1}{2}, \ \dfrac{1}{2}\right\}</tex> можно взять в качестве случайного источника нечестную монету с распределением <tex>\{p,q\}</tex> (с вероятностью <tex>p</tex> выпадает «Орёл»). Тогда математическим ожиданием количества элементов на уровне <tex>k</tex> будет <tex>n \cdot p^k</tex>. Время поиска будет равно <tex>O\left( \dfrac{1}{p} \log_{1/p} {n} \right)</tex> <tex>(</tex>на <tex>i</tex>-ом уровне элементов будет почти в <tex>\dfrac{1}{p}</tex> раз больше, чем на <tex>(i+1)</tex>-ом, значит на каждом уровне пройдём не более <tex>\dfrac{1}{p}</tex> элементов, а уровней всего <tex>\log_{1/p} {n}</tex><tex>)</tex>.
+
Вместо честной монеты с распределением <tex>\left\{\dfrac{1}{2}, \ \dfrac{1}{2}\right\}</tex> можно взять в качестве случайного источника нечестную монету с распределением <tex>\{p,q\}</tex> (с вероятностью <tex>p</tex> выпадает «Орёл»). Тогда математическим ожиданием количества элементов на уровне <tex>k</tex> будет <tex>n \cdot p^k</tex>. Время поиска будет равно <tex>O\left( \dfrac{1}{p} \log_{\frac{1}{p}} {n} \right)</tex> <tex>(</tex>на <tex>i</tex>-ом уровне элементов будет почти в <tex>\dfrac{1}{p}</tex> раз больше, чем на <tex>(i+1)</tex>-ом, значит на каждом уровне пройдём не более <tex>\dfrac{1}{p}</tex> элементов, а уровней всего <tex>\log_{\frac{1}{p}} {n}</tex><tex>)</tex>.  
 
 
Пусть у нас добавлено <tex>n</tex> элементов. Найдём такое распределение <tex>\left\{ p, q \right\}</tex>, при котором функция <tex>\dfrac{1}{x} \log_{1/x} {n}</tex> принимает минимальное значение. Производная этой функции равна <tex>-\dfrac{\ln{n} \left( \ln {(1/x)} - 1 \right)}{x^2 \ln^2{(1/x)}}</tex>. При <tex>x = \dfrac{1}{e}</tex> производная равна нулю, вторая производная в точке <tex>x_0 = \dfrac{1}{e}</tex> больше <tex>0</tex>, значит <tex>x_0</tex> <tex>-</tex> точка минимума. Значит при распределении <tex>\left\{ \dfrac{1}{e}, \dfrac{e - 1}{e} \right\}</tex> время поиска меньше всего. Но не стоит забывать, что это лишь теоретическая оценка и в действительности придумать источник с распределением <tex>\left\{ \dfrac{1}{e}, \dfrac{e - 1}{e} \right\}</tex> почти невозможно, поэтому на практике лучше всего использовать честную монету.
 
  
 
Для крайних распределений:
 
Для крайних распределений:
Строка 168: Строка 156:
 
}}
 
}}
  
Для решения данной задачи воспользуемся списком с пропусками. Когда нам приходит запрос первого типа, то мы просто добавляем числа <tex>L</tex> и <tex>R</tex> в список с пропусками (если какое-то из чисел уже было добавлено, то второй раз мы его не добавляем). После этого идём с верхнего уровня, и на каждом уровне мы ищем такие <tex>l</tex> и <tex>r</tex>, что значение <tex>l</tex> меньше <tex>L</tex>, а значение следующего за <tex>l</tex> элемента уже не меньше <tex>L</tex>. Аналогично ищем такое же <tex>r</tex>, только относительно <tex>R</tex>. Если значения <tex>l.next</tex> и <tex>r</tex> лежат полностью внутри отрезка <tex>[L, R]</tex>, то к самому отрезку <tex>[l.next, r]</tex> прибавляем <tex>1</tex>, а сам отрезок <tex>[L, R]</tex> разбиваем на три <tex>[L, l.next.key - 1]</tex>, <tex>[l.next.key, r.key]</tex> и <tex>[r.key + 1, R]</tex> и по отдельности решаем задачу уже для полученных отрезков (если для какого-то отрезка левая граница стала больше правой, то мы ничего не делаем). Допустим, что на каком-то уровне у нас получилось разделить отрезок <tex>[L, R]</tex> на <tex>3</tex> части. Но тогда на следующих уровнях мы будем уменьшать отрезок почти в два раза только с одной стороны, поскольку левая или правая часть отрезка будет равна <tex>l.next.key</tex> или <tex>r.key</tex>. Итого время обработки запроса <tex>O(\log{n})</tex>.
+
Для решения данной задачи воспользуемся списком с пропусками. Когда нам приходит запрос первого типа, то мы просто добавляем числа <tex>L</tex> и <tex>R</tex> в список с пропусками (если какое-то из чисел уже было добавлено, то второй раз мы его не добавляем). После этого идём с верхнего уровня, и на каждом уровне мы ищем такие <tex>l</tex> и <tex>r</tex>, что значение <tex>l</tex> меньше <tex>L</tex>, а значение следующего за <tex>l</tex> элемента уже не меньше <tex>L</tex>. Аналогично ищем такое же <tex>r</tex>, только относительно <tex>R</tex>. Если значения <tex>l.next</tex> и <tex>r</tex> лежат полностью внутри отрезка <tex>[L, R]</tex>, то к самому отрезку <tex>[l.next, r]</tex> прибавляем <tex>1</tex>, а сам отрезок <tex>[L, R]</tex> разбиваем на три <tex>[L, l.next.key - 1]</tex>, <tex>[l.next.key, r.key]</tex> и <tex>[r.key + 1, R]</tex> и по отдельности решаем задачу уже для отрезков <tex>[L, l.next.key - 1]</tex> и <tex>[r.key + 1, R]</tex> (если для какого-то отрезка левая граница стала больше правой, то мы ничего не делаем). Допустим, что на каком-то уровне у нас получилось разделить отрезок <tex>[L, R]</tex> на <tex>3</tex> части. Но тогда на следующих уровнях мы будем уменьшать отрезок почти в два раза только с одной стороны, поскольку левая или правая часть отрезка будет равна <tex>l.next.key</tex> или <tex>r.key</tex>. Итого время обработки запроса <tex>O(\log{n})</tex>.
  
 
Для запросов второго типа мы снова будем спускать с верхнего уровня до нижнего. На каждом уровне найдём тот элемент, значение которого не меньше точки <tex>x</tex>. Если такой элемент нашёлся, то прибавляем к ответу значение на отрезку между найденным элементом и следующим. Потом также спускаемся на один уровень вниз, если текущий уровень не был первым. Поскольку уровней всего <tex>\log{n}</tex>, а на каждом уровне обойдём не более двух элементов, то данный тип запросов мы обработаем за <tex>O(\log{n})</tex>.
 
Для запросов второго типа мы снова будем спускать с верхнего уровня до нижнего. На каждом уровне найдём тот элемент, значение которого не меньше точки <tex>x</tex>. Если такой элемент нашёлся, то прибавляем к ответу значение на отрезку между найденным элементом и следующим. Потом также спускаемся на один уровень вниз, если текущий уровень не был первым. Поскольку уровней всего <tex>\log{n}</tex>, а на каждом уровне обойдём не более двух элементов, то данный тип запросов мы обработаем за <tex>O(\log{n})</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: