Изменения

Перейти к: навигация, поиск

Список с пропусками

1139 байт добавлено, 14:22, 22 апреля 2019
м
Использование нечестной монеты
В конце алгоритма функция вернёт элемент, значение которого не меньше ключа <tex>\mathtt{key}</tex> или ссылку на конец списка на первом уровне.
Если в качестве случайного источника мы будем использовать честную монету, то в среднем случае будет <tex>\log{n}</tex> уровне. На самом верхнем уровне будет не более двух элементов. Тогда на каждом уровне в среднем нужно проверить не более двух элементов (в противном случае могли бы вместо двух нижних элементов проверить ещё один уровнем выше). Уровней всего Если же у нас будет <tex>\logk</tex> уровней, тогда на каждом уровне в среднем будет в <tex>n^{n1/k}</tex>раз элементов больше, откуда вытекает оценка времени чем уровнем выше. В таком случае время поиска элемента в <tex>-</tex> <tex>O(k \logcdot n^{n1/k})</tex>.
====Псевдокод====
Отдельно стоит обработать случай, когда вставка нового элемента увеличивает число уровней. Тогда необходимо создать ещё один отсортированный список, в котором будет всего один текущий элемент, и не забыть присвоить списку с пропусками новую ссылку на верхний уровень. Будем считать, что вставка каждого нового элемента увеличивает число уровней не более чем на один.
 
Заметим, что вставка элемента <tex>-</tex> поиск элемента и за <tex>O(1)</tex> добавляем не более, чем в <tex>k</tex> уровней элемент. Итого время работы <tex>O(k \cdot n^{1/k})</tex>.
====Псевдокод====
'''if''' res.next <tex>\neq</tex> ''null'' '''and''' res.next.key = key
res.next = res.next.next
 
Аналогично со вставкой удаление <tex>-</tex> поиск элемента за <tex>O(k \cdot n^{1/k})</tex> плюс удаление на каждом уровне за <tex>O(1)</tex>. Итого <tex>-</tex> <tex>O(k \cdot n^{1/k})</tex>.
Для того, чтобы удалить элемент <tex>\mathtt{key}</tex> из списка с пропусками <tex>\mathtt{skip}</tex>, необходимо вызвать функцию <tex>\mathtt{delete} \ </tex> следующим образом:
Вместо честной монеты с распределением <tex>\left\{\dfrac{1}{2}, \ \dfrac{1}{2}\right\}</tex> можно взять в качестве случайного источника нечестную монету с распределением <tex>\{p,q\}</tex> (с вероятностью <tex>p</tex> выпадает «Орёл»). Тогда математическим ожиданием количества элементов на уровне <tex>k</tex> будет <tex>n \cdot p^k</tex>. Время поиска будет равно <tex>O\left( \dfrac{1}{p} \log_{1/p} {n} \right)</tex> <tex>(</tex>на <tex>i</tex>-ом уровне элементов будет почти в <tex>\dfrac{1}{p}</tex> раз больше, чем на <tex>(i+1)</tex>-ом, значит на каждом уровне пройдём не более <tex>\dfrac{1}{p}</tex> элементов, а уровней всего <tex>\log_{1/p} {n}</tex><tex>)</tex>.
Пусть у нас добавлено <tex>n</tex> элементов. Найдём такое распределение <tex>\left\{ p, q \right\}</tex>, при котором функция <tex>\dfrac{1}{x} \log_{1/x} {n}</tex> принимает минимальное значение. Производная этой функции равна <tex>-\dfrac{\logln{n} \left( \log ln {(1/x)} - 1 \right)}{x^2 \logln^2{(1/x)}}</tex>. При <tex>x = \dfrac{1}{e}</tex> производная равна нулю, вторая производная в точке <tex>x_0 = \dfrac{1}{e}</tex> больше <tex>0</tex>, значит <tex>x_0</tex> <tex>-</tex> точка минимума. Значит при распределении <tex>\left\{ \dfrac{1}{e}, \dfrac{e - 1}{e} \right\}</tex> время поиска меньше всего. Но не стоит забывать, что это лишь теоретическая оценка и в действительности придумать источник с распределением <tex>\left\{ \dfrac{1}{e}, \dfrac{e - 1}{e} \right\}</tex> почти невозможно, поэтому на практике лучше всего использовать честную монету.
Для крайних распределений:
390
правок

Навигация