Изменения

Перейти к: навигация, поиск

Стохастический градиентный спуск

147 байт добавлено, 11:59, 13 марта 2019
м
Источники информации
== Стохастический градиентный спуск ==
Проблема предыдущего алгоритма заключается в том, что чтобы определить новое приближение вектора весов необходимо вычислить градиент от каждого элемента выборки, что может сильно замедлять алгоритм. Идея ускорения алгоритма заключается в использовании только одного элемента, либо некоторой подвыборки для подсчета нового приближения весов. То есть теперь новое приближение будет вычисляться как ${\bf w}^{(t+1)}={\bf w}^{(t)} $-$ h\nabla \mathscr{L}_i({\bf w}^{(t)})$, где $i$ $-$ случайно выбранный индекс. Так как теперь направление изменения $\bf w$ будет определяться за $O(1)$, подсчет $Q$ на каждом шаге будет слишком дорогостоящим. Для того, чтобы ускорить оценку $Q$, будем использовать приближенную рекуррентную формулу. Можно выбрать одну из следующих формул:* среднее арифметическое: $\overline{Q}_m = \dfrac{1}{m}\varepsilon_m + \dfrac{1}{m}\varepsilon_{m - 1} + \dfrac{1}{m}\varepsilon_{m - 2} + \dots = \dfrac{1}{m}\varepsilon_m + (1 - \dfrac{1}{m})\overline{Q}_{m-1}$;
* экспоненциальное скользящее среднее: $\overline{Q}_m = \lambda\varepsilon_m + (1 - \lambda)\varepsilon_{m - 1} + (1 - \lambda)^2\varepsilon_{m - 2} + \dots = \lambda\varepsilon_m + (1-\lambda)\overline{Q}_{m - 1},$ где $\lambda$ $-$ темп забывания предыстории ряда.
== Эвристики ==
Существует несколько способов инициализировать веса:
* ${\bf w} = {\bf 0}$;* $w_j = random(-\dfrac{1}{2n}, \dfrac{1}{2n})$. Стоит брать небольшие случайные веса, так как если выбрать их слишком большими, в некоторых случаях (к примеру в случае нейрона с [[Нейронные_сети,_перцептрон|функцией активациии]] равной арктангенсу) большие начальные значения веса могут привести в область с малыми по модулю производными, в связи с чем из такой области будет трудно выбраться.;* $w_j = \dfrac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$, где $f_j = (f_j(x_i))_{i=1}^l$. Оценка оптимальная в случае, если функция потерь квадратична и признаки нескоррелированы, то есть $\langle f_j, f_k \rangle = 0, j \neq k$.
Так же можно запустить спуск несколько раз с разными начальными приближениями и выбрать лучшее решение.
== Источники информации ==
#*[http://www.machinelearning.ru/wiki/images/5/53/Voron-ML-Lin-SG.pdf Метод К.В. Воронцов {{---}} Линейные методы классификации и регрессии: метод стохастического градиента] $-$ презентация Воронцова#*[https://www.youtube.com/watch?v=4BKQ3GZR32w&list=PLJOzdkh8T5kp99tGTEFjH_b9zqEQiiBtC&index=4 Метод Курс "Машинное обучение" {{---}} Линейные методы классификации: метод стохастического градиента{{---}} К.В. Воронцов] $-$ запись лекции Воронцова#*[https://en.wikipedia.org/wiki/Logistic_regression Wikipedia {{---}} Logistic regression] $-$ Wikipedia#*[https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.decision_function sklearn.linear_model.SGDClassifier] ${{---$ }} описание алгоритма на scikit-learn.org]
[[Категория: Машинное обучение]]
276
правок

Навигация