Редактирование: Стохастическое вложение соседей с t-распределением

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 15: Строка 15:
 
Данные вероятности получаются из тех же самых предложений, что были сделаны для пространства высокой размерности, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\dfrac{1}{\sqrt{2}}</tex> для всех точек.
 
Данные вероятности получаются из тех же самых предложений, что были сделаны для пространства высокой размерности, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\dfrac{1}{\sqrt{2}}</tex> для всех точек.
  
Если удастся хорошо вложить одно пространство в другое, <tex>p_{i|j}</tex> должны стать похожими на <tex>q_{i|j}</tex>. В связи с этим SNE пытается уменьшить разницу в распределении вероятностей. Стандартной мерой для измерения различия вероятностей служит дивергенция Кульбака-Лейблера<ref>[https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Расстояние Кульбака—Лейблера]</ref>:
+
Если удастся хорошо вложить одно пространство в другое, должны совпасть распределения совместных вероятностей. То есть <tex>p_{i|j}</tex> должны стать похожими на <tex>q_{i|j}</tex>. В связи с этим SNE пытается уменьшить разницу в распределении вероятностей. Стандартной мерой для измерения различия вероятностей служит дивергенция Кульбака-Лейблера<ref>[https://ru.wikipedia.org/wiki/Расстояние_Кульбака_—_Лейблера Расстояние Кульбака—Лейблера]</ref>. Определяется она так:
  
 
<tex>KL(P \Vert Q) = \sum\limits_j p_j \log_2 \dfrac{p_j}{q_j}</tex>.
 
<tex>KL(P \Vert Q) = \sum\limits_j p_j \log_2 \dfrac{p_j}{q_j}</tex>.
Строка 25: Строка 25:
 
Дивергенция Кульбака-Лейблера не является симметричной мерой, поэтому, например, вложение близких точек в удаленные даёт гораздо большее значение ошибки, чем вложение далеких точек в близкие. Другими словами, целевая функция нацелена на сохранение локальной структуры вокруг точек.
 
Дивергенция Кульбака-Лейблера не является симметричной мерой, поэтому, например, вложение близких точек в удаленные даёт гораздо большее значение ошибки, чем вложение далеких точек в близкие. Другими словами, целевая функция нацелена на сохранение локальной структуры вокруг точек.
  
Параметры <tex>\sigma_i</tex> подбираются следующим образом. Каждое значение параметра порождает свое распределение вероятностей <tex>P_i</tex>. Это распределение имеет энтропию<ref>[https://ru.wikipedia.org/wiki/Информационная_энтропия Информационная энтропия]</ref> <tex>H(P_i) = \sum\limits_j p_{j|i}\log_2 p_{j|i} </tex>, которая возрастает с ростом <tex>\sigma_i</tex>. В самом алгоритме <tex>\sigma_i</tex> вычисляются с помощью [[Вещественный двоичный поиск|вещественного двоичного поиска]] по заранее заданной пользователем величине, называемой перплексией<ref>[https://en.wikipedia.org/wiki/Perplexity Perplexity]</ref>: <tex>Perp(P_i) = 2 ^ {H(P_i)}</tex>.
+
Параметры <tex>\sigma_i</tex> подбираются следующим образом. Каждое значение параметра порождает свое распределение вероятностей <tex>P_i</tex>. Это распределение имеет энтропию<ref>[https://ru.wikipedia.org/wiki/Информационная_энтропия Информационная энтропия]</ref>
 +
 
 +
<tex>H(P_i) = \sum\limits_j p_{j|i}\log_2 p_{j|i} </tex>,
 +
 
 +
которая возрастает с ростом <tex>\sigma_i</tex>. В самом алгоритме <tex>\sigma_i</tex> вычисляются с помощью [[Вещественный двоичный поиск|вещественного двоичного поиска]] по заранее заданной пользователем величине, называемой перплексией<ref>[https://en.wikipedia.org/wiki/Perplexity Perplexity]</ref>, которая определяется как
 +
 
 +
<tex>Perp(P_i) = 2 ^ {H(P_i)}</tex>.
  
 
Изначально точки <tex>y_i</tex> сэмплируют в пространстве низкой размерности в соответствии с распределением Гаусса с маленьким стандартным отклонением с математическим ожиданием в нуле, далее идет оптимизация целевой функции. Она проводится [[Стохастический градиентный спуск|методом градиентного спуска]]. Градиент равен:
 
Изначально точки <tex>y_i</tex> сэмплируют в пространстве низкой размерности в соответствии с распределением Гаусса с маленьким стандартным отклонением с математическим ожиданием в нуле, далее идет оптимизация целевой функции. Она проводится [[Стохастический градиентный спуск|методом градиентного спуска]]. Градиент равен:

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: