Изменения

Перейти к: навигация, поиск
Симметричное стохастическое вложение соседей
{{Определение
|definition=
'''Стохастическое вложение соседей с t-распределением''' (англ. ''t-Distributed Stochastic Neighbor Embedding, t-SNE'') {{---}} метод визуализации данных высокой размерности с помощью представления каждой точки данных в двух или трехмерном пространстве, являющийся модификацией метода стохастического вложения соседей.
}}
[[Файл:MNIST_compression_methods_comparison.png|300px|thumb|right|Пример работы методов [[Стохастическое вложение соседей с t-распределением|t-SNE]], Isomap<ref>[https://en.wikipedia.org/wiki/Isomap Isomap]</ref>, Sammon mapping<ref>[https://en.wikipedia.org/wiki/Sammon_mapping Sammon mapping]</ref>, LLE <ref>[https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#Manifold_learning_algorithms Manifold learning algorithms]</ref> на наборе данных [[Известные наборы данных|MNIST]]]]
== Стохастическое вложение соседей ==
Пусть стоит задача вложить множество точек в пространстве высокой размерности <tex>\{x_i \mid x_i \in X\}</tex> в пространство низкой размерности. Обозначим множество точек в пространстве низкой размерности, которые получаются после вложения через <tex>\{y_i \mid y_i \in Y\}</tex>. '''Стохастическое вложение соседей''' (англ. ''Stochastic Neighbor Embedding, SNE'') конвертирует расстояния в Евклидовом пространстве высокой размерности между точками в условные вероятности <tex>p_{j|i}</tex>. <tex>p_{j|i}</tex> {{---}} вероятность, что точка <tex>x_i</tex> выберет в качестве своего соседа точку <tex>x_j</tex> среди остальных точек данных. Будем считать, что вероятность для точки <tex>x_i</tex> найти соседа падает с увеличением расстояния от точки <tex>x_i</tex> в соответствии с распределением Гаусса<ref>[https://ru.wikipedia.org/wiki/Нормальное_распределение Нормальное распределение]</ref> с нулевым [[Математическое ожидание случайной величины|математическим ожиданием]] и [[Дисперсия случайной величины|стандартным отклонением]] <tex>\sigma_i</tex>. В соответствии с этим <tex>p_{j|i}</tex> выражается как
<tex>p_{j|i} = \dfrac{\exp{(-\dfrac{{\left\Vert x_i - x_j \right\Vert}^2/}{2\sigma_i^2})}}{\sum\limits_{k \neq i}\exp{(\dfrac{{-\left\Vert x_i - x_k \right\Vert}^2/}{2\sigma_i^2})}}</tex>.
Теперь определим похожие вероятности <tex>q_{i|j}</tex> для пространства низкой размерности, куда вкладываются точки пространства высокой размерности.
<tex>q_{j|i} = \dfrac{\exp{(-{\left\Vert y_i - y_j \right\Vert}^2)}}{\sum\limits_{k \neq i}\exp{({-\left\Vert x_i y_i - x_k y_k \right\Vert}^2)}}</tex>.
Данные вероятности получаются из тех же самых предложений, что были сделаны для пространства высокой размерности, за исключением того, что все распределения Гаусса имеют стандартное отклонение <tex>\dfrac{1}{\sqrt{2}}</tex> для всех точек.
<tex>KL(P \Vert Q) = \sum\limits_j p_j \log_2 \dfrac{p_j}{q_j}</tex>.
В данном случае имеем <tex>|X|</tex> распределений. Тогда целевую функцию<ref>[https://ru.wikipedia.org/wiki/Целевая_функция Целевая функция]</ref>, который которую будем оптимизировать, определим как сумму соответствующих дивергенций Кульбака-Лейблера. То есть:
<tex>C = \sum\limits_i KL(p_i \Vert q_i) = \sum\limits_i \sum\limits_j p_{j|i} \log_2 \dfrac{p_{j|i}}{q_{j|i}}</tex>.
== Физическая интерпретация ==
Есть следующая физическая интерпретация модели. В пространстве низкой размерности натянуты пружины между каждой парой точек <tex>y_i</tex> и <tex>y_j</tex>. , действующие в направлении <tex>y_i - y_j</tex>. Пружины могут притягивать или отталкивать точки в зависимости от расстояния между ними. Сила, прикладываемая пружиной, пропорциональна её длине <tex>\left\Vert y_i - y_j \right\Vert</tex> и жесткости<ref>[https://ru.wikipedia.org/wiki/Жёсткость Жесткость]</ref> <tex>p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j}</tex>. Оптимизация функционала в данной интерпретации эквивалентна поиску положения точек, в котором будет наблюдаться равновесие сил.
== Симметричное стохастическое вложение соседей ==
<tex>q_{i j} = \dfrac {\exp ({ -{\left\Vert y_i - y_j \right\Vert}^2 }) } {\sum\limits_{k \neq l} \exp ({ -{\left\Vert y_k - y_l \right\Vert}^2) } }</tex>,
но то же решение для <tex>p_{i j}</tex> привело бы к проблеме, что для [[Выброс|выброса]] <tex>x_i</tex> <tex>p_{i j}</tex> будет очень маленькой для любого <tex>x_j</tex>. Таким образом, таким образом будет почти нулевой соответствующая дивергенция Кульбака-Лейблера для любого распределения <tex>q_{i j}</tex>. Это означало бы, что положение точки <tex>y_i</tex> определялось бы очень неточно относительно положения других точек и не было бы особой разницы в том, где она расположена. Поэтому в t-SNE <tex>p_{i j}</tex> определили как:
Таким образом, в симметричном SNE в качестве <tex>p_{i j} = \dfrac {p_{i|j} + p_{i|j} } {2|X|}</tex>.рассматривается следующая величина:
<tex>p_{i j} = \dfrac {p_{i|j} + p_{j|i} } {2|X|}</tex>. Очевидный плюс такого определения в том, что <tex>\sum\limits_j p_{i j} > \dfrac 1 {2|X|}</tex> для всех точек, что хорошо скажется на выбросах. А также теперь <tex>p_{i j} = p_{j i}</tex>, <tex>q_{i j} = q_{j i}</tex>.
Авторы утверждают, что симметричный SNE вкладывает данные в пространство низкой размерности почти так же как и ассиметричный, а иногда даже лучше.
== Проблема скученности ==
Необходимо понимать, что невозможно абсолютно точно моделировать расстояния между точками пространства высокой размерности в низком. Например, в десятимерном пространстве существует <tex>11</tex> равноудаленных друг от друга точек, в то время как на плоскости может быть максимум <tex>3</tex> равноудаленные точки. При использовании обычного SNE возникает следующая проблема, которая вытекает из разного распределения вероятностей в пространствах высокой и низкой размерностей. Пусть есть некоторое пространство высокой размерности. Пусть в нем точки <tex>x_i</tex> равномерно распределены в нем вокруг некоторой точки <tex>x_ix_0</tex> в некотором шаре с радиусом <tex>R</tex>. Заметим, что, чем больше размерность пространства, тем больше точек попадет рядом с границей шара, поэтому количество близких к <tex>x_0</tex> точек с ростом размерности будет убывать. Теперь попытаемся вложить данное пространство в плоскость. Пусть точки <tex>x_i</tex> перешли в точки <tex>y_i</tex> на плоскости. Заметим, что область пространства на плоскостиесли попытаться вложить точки <tex>x_i</tex> в круг радиуса <tex>R</tex> с центром в точке <tex>y_0</tex> образуется большое количество маленьких расстояний между точками <tex>y_i</tex>, доступная для размещения умеренно-удаленных точек пространства высокой размерности относительно области пространства, доступное для размещения близких точек пространства высокой размерности достаточно мала по сравнению с тем же самым т.к. объем сферы в исходном высокомерном пространстве (нужно сравнить отношения объемов сфер в этих пространствах)несопоставим с площадью круга на плоскости. Таким образом, если мы хотим правильно моделировать маленькие расстояния на плоскости и не иметь их между умеренно-удаленными точками пространства высокой размерности, следовало бы поместить умеренно-удаленные точки подальше от <tex>x_0</tex> точки <tex>x_i</tex>ещё дальше, чем в исходномпространстве. В Но в таком случае , вспоминая физическую интерпретацию, на эти слишком далекие соответствующие им точки на плоскости <tex>y_i</tex> будет действовать небольшая сила притяжения от точки к точке <tex>x_iy_0</tex>. Но, принимая Принимая во внимание остальные точки, таких сил что точек наподобие <tex>x_0</tex> в реальной выборке данных будет достаточно много, их пружины вместе образуют силу, что сожмет все точки в нуле и будет мешать образованию кластеров.
== Стохастическое вложение соседей с t-распределением ==
Чтобы избежать проблемы скученности, было решено использовать в пространстве низкой размерности t-распределение Стьюдента с одной степенью свободы<ref>[https://ru.wikipedia.org/wiki/Распределение_Стьюдента Распределение Стьюдента]</ref> вместо распределения Гаусса. Данное распределение очень похоже на распределение Гаусса, но имеет большую вероятностную массу на участках, отдаленных от нуля(Рис. 2.), что решает описанную выше проблему, т.к. теперь удаленные точки лучше отталкиваются.
[[Файл:Normal t-distribution comparison.png|300px|right|thumb|Рис. 2. Сравнение плотностей нормального распределения (красный синий цвет) и t-распределения с одной степенью свободы (синий красный цвет)]]
В связи с заменой распределения <tex>q_{i j}</tex> определяется следующим образом:
<tex>\dfrac {\delta C} {\delta y_i} = 4 \sum\limits_j (p_{i j} - q_{i j})(y_i - y_j)(1 + {\left\Vert y_i - y_j \right\Vert}^2)^{-1}</tex>.
== Оптимизации в стохастическом вложении соседей с t-распределением SNE ==
В t-SNE используется 2 основные оптимизации:
# Вторая оптимизация называется "раннее преувеличение". В данной оптимизации на ранних итерациях <tex>p_{i j}</tex> умножаются на некоторое положительное число, например на <tex>4</tex>. Так как <tex>q_{i j}</tex> остаются теми же самыми, они слишком маленькие, чтобы моделировать соответствующие <tex>p_{i j}</tex>. Как следствие, образуются очень плотные кластера, которые широко раскиданы в пространстве низкой размерности. Это создает много пустого пространства, которое используется кластерами, чтобы легко менять и находить наилучшее взаимное расположение.
[[Файл:T-SNE iterations visualization.gif||200px|thumb|right|Рис. 23. Визуализация работы t-SNE]]
На Рис. 2 3 представлена визуализация работы t-SNE, на которой видны эффекты от применения данных приведенных выше оптимизаций.
== См. также ==
== Источники информации ==
# [http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf Laurens van der Maaten and Geoffrey Hinton {{---}} Visualizing Data using t-SNE]# [http://datareview.info/article/algoritm-t-sne-illyustrirovannyiy-vvodnyiy-kurs datareview.info {{---}} Алгоритм t-SNE. Иллюстрированный вводный курс]# [https://en.wikipedia.org/wiki/Multivariate_t-distribution Wikipedia {{---}} Multivariate t-distribution]
[[Категория: Машинное обучение]]
[[Категория: Уменьшение размерности]]
Анонимный участник

Навигация