Суммирование расходящихся рядов

Материал из Викиконспекты
Версия от 01:19, 3 июня 2011; Smolcoder (обсуждение | вклад) (Доказательство правильности)
Перейти к: навигация, поиск

Введение

Напомним, что имея последовательность суммы вещественных чисел [math]\{a_n\}[/math] рядом мы называли символ [math]\sum\limits_{i = 1}^\infty a_i[/math]. Ряды можно складывать и умножать на число. Далее, мы определили [math]\sum\limits_{i = 1}^\infty a_i = \lim\limits_{n \rightarrow \infty} \sum\limits_{i = 1}^n a_i[/math].

Мы показали, что исходя их этого равенства для сходимости ряда частичных сумм необходимо условие [math]a_n \rightarrow 0[/math]. Например, ряд [math]\sum\limits_{n = 0}^\infty (-1)^n[/math] не сходится (не имеет суммы в представленном выше смысле), поскольку [math](-1)^n[/math] предела не имеет.

Во многих задачах математики необходимо символу ряда приписывать некоторое число и называть суммой ряда. Как правило, требуется соблюдение условий, вытекающих из арифметических действий с обычными рядами.

Правила суммирования

Когда пишут [math]\sum\limits_{n = 0}^\infty a_n = A(F)[/math], то говорят, что ряд из [math]a_i[/math] имеет сумму [math]A[/math] по правилу суммирования [math]F[/math].

Для правил суммирования требуется выполнение некоторых условий.

  • Линейность: если ряд из [math]b_n[/math] имеет суммой [math]B[/math] по правилу [math]F[/math], то ряд из [math]\alpha a_n + \beta b_n[/math] должен по этому правилу иметь суммой [math]\alpha A + \beta B[/math].
  • Перманентность (регулярность): если [math]\sum\limits_{n = 0}^\infty a_n = A[/math] (ряд имеет сумму в обычном смысле), то [math]\sum\limits_{n = 0}^\infty a_n = A(F)[/math]
  • Эффективность: должны существовать ряды, которые суммируются с помощью [math]F[/math], но не имеют суммы в классическом смысле.

Метод средних арифметических

Ряд [math]\sum\limits_{n = 0}^\infty a_n[/math] имеет сумму [math]S[/math] по методу средних арифметических (обозначают аббревиатурой с.а.), если [math]S = \lim\limits_{n \rightarrow \infty} \frac 1{n + 1} \sum\limits_{k = 0}^n S_k[/math]. Как правило, используют обозначение [math]\sigma_n = \frac 1{n + 1} \sum\limits_{k = 0}^n S_k[/math].

Выясним, что способ удовлетворяет перечисленным выше требованиям. Линейность этого способа очевидна (из арифметики пределов и свойствах сложения конечного числа слагаемых).

Проверим эффективность способа.

Утверждение:
Сумма расходящегося ряда [math]\sum\limits_{k = 0}^\infty (-1)^k[/math] равна [math]\frac 12[/math] по методу средних арифметических.
[math]\triangleright[/math]

[math]\sigma_{2m + 1} = \frac 1{2m + 1} (S_0 + S_1 + \dots + S_{2m}) = \frac m{2m + 1} \longrightarrow \frac 12[/math].

Аналогично рассматриваем [math]\sigma_{2m}[/math].

Итого, [math]\sigma_n \longrightarrow \frac 12[/math], и ряд имеет сумму [math]\frac 12[/math] по методу средних арифметических.
[math]\triangleleft[/math]

Проверим перманентность. Требуется доказать, что если [math]S = \lim\limits_{n \rightarrow \infty} S_n[/math], то [math]S = \lim\limits_{n \rightarrow \infty} \sigma_n[/math].

Действительно, [math]S_n = S + \alpha_n[/math], где [math]\alpha_n \longrightarrow 0[/math]. Тогда [math]\sigma_n = S + \frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k[/math].

Требуется доказать, что [math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k \longrightarrow 0[/math]. Докажем по определению.

Рассмотрим некоторое [math]\varepsilon \gt 0[/math], подбираем [math]N[/math] такое, что [math]n \ge N \Rightarrow |\alpha_n| \lt \varepsilon / 2[/math].

[math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k = \frac 1{n + 1} \sum\limits_{k = 0}^N \alpha_k + \sum\limits_{k = N + 1}^n \alpha_k[/math] [math]\left | \frac 1{2n + 1} \sum\limits_{k = 0}^n \alpha_k \right | \le \frac 1{n + 1} \sum\limits_{k = 0}^N |\alpha_k| + \frac {n - N}{n + 1} \varepsilon[/math]

Поскольку в первом слагаемом бесконечно малая умножается на константу, то начиная с [math]N_1[/math] выполняется [math]\frac 1{n + 1} \sum\limits_{k = 0}^n |\alpha_k| \lt \varepsilon / 2[/math]. Но, поскольку [math]\frac {n - N}{n + 1} \lt 1[/math], то, начиная с [math]N + N_1[/math] выполняется [math]\left | \frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k \right | \lt \varepsilon[/math].

Следовательно, по определению предела [math]\frac 1{n + 1} \sum\limits_{k = 0}^n \alpha_k[/math] стремится к нулю.

Метод Абеля

Некоторые умозаключения

[math](n + 1)\sigma_n = S_0 + S_1 + \ldots + S_n[/math]

[math]n\sigma_n = S_0 + S_1 + \ldots + S_{n - 1}[/math]

Выразим частичные суммы через [math]n[/math] и [math]\sigma[/math]:

[math](n + 1)\sigma_n - n\sigma_{n - 1} = S_n[/math]

[math]n\sigma_{n - 1} - (n - 1)\sigma_{n - 2} = S_{n - 1}[/math]

Выразим через это же элемент ряда:

[math](n + 1)\sigma_n - 2n\sigma_{n - 1} + (n - 1)\sigma_{n - 2} = a_n[/math]

Поделим все выражение на [math]n[/math]:

[math]\frac {a_n}{n} = (1 + \frac {1}{n})\sigma_n - 2\sigma_{n - 1} + (1 - \frac {1}{n})\sigma_{n - 2}[/math]

Мы знаем, что [math] \sigma_n\to S [/math] при [math] n \to \infty[/math]. Получается, что [math] \frac {a_n}{n}\rightarrow 0[/math].

Необходимый признак

Из предыдущего пункта вытекает необходимый признак:

Если ряд суммируется методом средних арифметических[math](\exists \lim\limits_{n \to \infty} \sigma_n)[/math], то [math]\frac {a_n}{n} \to 0[/math]. Однако, существуют ряды, у которых это требование не выполняется. Например: [math] \sum\limits_{k = 0}^{\infty} (-1)^k(k + 1)[/math]. Было бы неплохо научиться что-нибудь делать хотя бы с некоторыми такими рядами.

Метод Абеля

[math]\sum\limits_{n = 0}^{\infty}a_n[/math], пусть [math] \forall t \in (0; 1) : \sum\limits_{n = 0}^{\infty}a_nt^n = f(t)[/math](в классическом смысле). Полагаем [math] S = \lim\limits_{t \to 1 - 0} f(t)[/math](если таковой существует).


Определение:
[math]\sum\limits_{n = 0}^{\infty} = S(A)[/math], где [math]A[/math] — метод Абеля.


Доказательство правильности

  • Эффективность:

Рассмотрим ряд [math] \sum\limits_{k=0}^{\infty} (-1)^k (k+1) [/math]. Покажем, что его сумма равна [math] \frac 14 [/math].

[math] ?\exists \lim\limits_{n \rightarrow \infty} \sum\limits_{k=0}^n (-1)^k(k+1)t^k [/math]

Проверим существование этого предела, свернув сумму. [math] S_n(t) = \sum\limits_{k=0}^n (-1)^k(k+1)t^k [/math]

Проинтегрируем почленно, что возможно, поскольку эта сумма состоит из конечного числа слагаемых.

[math] \int\limits_0^x S_n(t)dt = \sum\limits_{k=0}^n \int\limits_0^x (-1)^k t^{k+1} dt = x \frac{1 - (-x)^{n+1}}{1 + x} [/math]

[math] S_n(t) = (t \frac {1 - (-t)^{n+1}} {1 + t})' = \frac{1 - (-t)^{n-1}}{1 + t} + t * \frac{(n + 1)(-t)^n(1 + t) - (1 - (-t)^{n+1})}{(1 + t)^2} \xrightarrow[n \rightarrow \infty, 0 \lt t \lt 1]{} \frac 1{1 + t} - \frac t{(1 + t)^2} [/math]

[math] f(t) = \frac 1{1+t} - \frac t{(1+t)^2} \xrightarrow[t\to 1-0]{} \frac 14 [/math]

Итак, мы показали, что существуют ряды, суммирующиеся методом Абеля, но не суммирующиеся методом средних арифметических.

  • Линейность этого метода очевидна из арифметики предела.
  • Перманентность: Далее мы докажем более сильное утверждение (теорема Фробениуса): [math] \sum\limits_{k=0}^{\infty} a_k = S [/math] (с.а.) [math] \Rightarrow \sum\limits_{k=0}^{\infty} a_k = S [/math] (A), и, так как мы ранее доказали перманентность метода средних арифметических, то перманентность Абеля автоматически следует из этого.

Однако, получим эти результаты отдельно.

[math] 0 \lt t \lt 1 [/math], Сходится ли [math] \sum\limits_{n=0}^{\infty} a_n t^n [/math], при условии, что [math] \sum\limits_{n=0}^{\infty}a_n = S [/math] - сходится?

Рассмотрим [math] \sum\limits_{n=k}^{k+p} a_n t^n \xrightarrow[k, p \to \infty]{} 0 [/math]. Если это правда, что и ряд [math] \sum\limits_{n=0}^{\infty} a_n t^n [/math] сходится по критерию Коши сходимости рядов.

[math] a_n = S_n - S_{n-1} [/math]

[math] \sum\limits_{n=k}^{k+p} a_n t^n = \sum\limits_{n=k}^{k+p}S_n t^n - \sum\limits_{n=k}^{k+p} S_{n-1} t^n = \sum\limits_{n=k}^{k+p} S_n t^n - \sum\limits_{n=k-1}^{k+p-1} S_n t^{n+1} = S_{k+p} t^{k+p} - S_{k-1} t^{k-1} + \sum\limits_{n=k}^{k+p-1} S_n (t^n - t^{n+1}) \qquad (*) [/math]

[math] t \gt 0 \Rightarrow t^n \gt 0, M = \sup\limits_{n \in \mathbb Z} S_n [/math]

[math] |\sum\limits_{n=k}^{k+p} a_n t^n| \le |S_{k+p}|t^{k+p} + |S_{k-1}|t^k + M \sum\limits_{j=k}^{k+p-1}(t^j-t^{j+1}) \le M t^{k+p} + M t^k + M (t^k - t^{k+p-1}) \xrightarrow[k,p \to \infty]{} 0 [/math]

Итак, [math] \forall t: 0 \lt t \lt 1 \Rightarrow \exists f(t) = \sum\limits_{n=0}^{\infty} a_n t^n [/math]

В [math] (*) [/math] положим [math] k = 0 [/math] :

[math] \sum\limits_{k=0}^p a_n t^n = S_p t^p + \sum\limits_{j=0}^{p-1} S_j(t^j - t^{j+1}) [/math]. Первое слагаемое стремится к 0: [math] p \to \infty \Rightarrow S_p \to S, \\ f(t) = \sum\limits_{j=0}^{\infty} S_j(t^j - t^{j+1}) [/math]

Пусть [math] \sum\limits_{j=0}^{\infty} (t^j - t^{j+1}) = 1 [/math], тогда [math] S [/math] можно записать как [math] S = \sum\limits_{j=0}^{\infty} S (t^j - t^{j+1}) [/math]

[math] f(t) - S = \sum\limits_{j=0}^{\infty} (S_j - S)(t^j - t^{j+1}) [/math]

Определение предела для [math] S_j: \\ \forall \varepsilon \gt 0: \exists N: \forall n \gt N: |S_n - S| \le \varepsilon [/math]

[math] |f(t) - S| \le |\sum\limits_{j=0}^N (S_j - S)(t^-t^{j+1})| + \sum\limits_{j=N+1}^{\infty} |S_j - S|(t^-t^{j+1}) [/math]

[math] |S_j - S| \le \varepsilon \Rightarrow \sum\limits_{j=N+1}^{\infty} |S_j - S|(t^-t^{j+1}) \le \varepsilon [/math]

Теперь, если [math] t [/math] достаточно близко к 0, и, поскольку [math] N [/math] не зависит от [math] t [/math], первое слагаемое можно сделать сколь угодно малым, пусть оно меньше [math] \varepsilon [/math].

Тогда [math] |f(t) - S| \le 2\varepsilon [/math], перманентность доказана.