Изменения

Перейти к: навигация, поиск

Счетно-нормированные пространства

5777 байт добавлено, 01:50, 21 января 2019
Нет описания правки
{{В разработке}}<wikitex>
$C^p [a; b]$ — пространство непрерывных на $[a; b]$ функций, первые $p$ производных которых также непрерывны. $\| f \| = \sum\limits_{k=0}^p \max\limits_{t \in [a; b]} | f^{(k)}(t)|$
{{Определение
|definition=
Пусть $X$ — линейное пространство, . Тогда если существует счётное множество $p_1 \dots p_n \dots$ — полунормы. Если полунорм, такое, что для $x \in X$ из того, что $\forall k: p_k(x) = 0$ следует, что $x = 0$, то $X$ называют '''счетно-нормированным пространством'''}} Пример:* $X = C^{(\infty)}[a; b]$, $p_n(x) = \max\limits_{t \in [a; b]} |x^{(n)}(t)|$ {{Утверждение|statement=Счетно-нормированные пространства можно метризовать как $\mathbb{R}^{\infty}$: $\rho(x, y) = \sum\limits_{n=1}^{\infty} {1 \over 2^n} {p_n(x - y) \over 1 + p_n(x - y)}$.|proof=# Очевидно, $\rho(x, y) \ge 0$, рассмотрим, когда $\rho(x, y) = 0$, это значит, что $\forall n: p_n(x - y) = 0$, по определению счетно-нормированного пространства это означает, что $x - y = 0 \implies x = y$.# Очевидно# Проверяется аналогично [[Метрические пространства#rinfcoordconv | доказательства метризуемости $R^\infty$]], рассмотрим функцию $f(t) = \frac{t}{1 + t}$, для нее выполняется $f(t_1) < f(t_2)$ при $t_1 < t_2$ и $f(t_1 + t_2) < f(t_1) + f(t_2)$ для всех $t_1, t_2 > 0$. Рассмотрим каждое $p_n(x - z) = p_n((x - y) + (y - z)) \le p_n(x - y) + p_n(y - z)$. Тогда $f(p_n(x - z)) \le f(p_n(x - y) + p_n(y - z)) \le f(p_n(x - y)) + f(p_n(y - z))$. Тогда и $\sum\limits_n \frac{1}{2^n} \frac{p_n(x - z)}{1 + p_n(x - z)} \le \sum\limits_n \frac{1}{2^n} \frac{p_n(x - y)}{1 + p_n(x - y)} + \sum\limits_n \frac{1}{2^n} \frac{p_n(y - z)}{1 + p_n(y - z)}$, что и требовалось доказать.}}  {{Определение|definition='''$x_n$ сходится к $x$ по системе полунорм $\{p_m\}$''', если $p_m(x_n - x) \to 0$ при всех $m$.<br> Две системы полунорм '''эквивалентны''', если они порождают одну и ту же сходимость.
}}
$x = \lim\limits_{p \to \infty} x_p $ определеяется как то, что все $p_n(x - x_p) \xrightarrow[p \to \infty]{} 0$, то есть $p$ гарантирует единственность Единственность пределагарантирована: если $x' = \lim\limits_{p n \to \infty} x_px_n$, все $p_np_m(x' - x_px_n) \to 0$, $p_np_m(x - x') \le p_np_m(x - x_px_n) + p_np_m(x' - x_px_n)$, то есть при стремлении $pn$ к нулюбесконечности, $p_np_m(x - x')$ тоже стремится к нулю и $x = x'$.
Счетно-нормированные пространства можно нормировать как $\mathbb{R}^{\infty}$: $\rho(x, y) = \sum\limits_{n=1}^{\infty} {1 \over 2^n} 2{p_n(x - y) \over 1 + p_n(x - y)}$.
Пример:* $X = C^{(\infty)}[a; b]$Заметрим, $p_n(x) = \max\limits_{t \in [a; b]} |x^{(n)}(t)|$что нормированные пространства являются частным случаем счетно-нормированных, но обратное в общем случае неверно, каковым вопросом мы и займемся, то есть существует ли норма, сходимость в которой эквивалентна сходимости по системе полунорм? Если такая норма есть, следовательното говорят, его можно рассматривать как что данное счетно-нормированное пространство и как метрическоенормируемо.
Возникает вопрос в каком случае можно нормировать: существует норма, сходимость в которой эквивалентна сходимости по системе полунорм. TODO пшшш какая-то непонятная хрень про монотонность {{Определение|definition=Система полунорм. Две системы полунорм эквивалентны$\{p_n\}$ называется '''монотонной''', если они порождают одну и ту же сходимость$\forall n \forall x \in X: p_n(x) \le p_{n+1}(x)$.}}
Можно считать, что система полунорм всегда удовлетворяет условию монотонности, так как произвольную систему $\{ p_n \}$ можно преобразовать в $q_n = \sum\limits_{k=1}^n p_k$, которая определяет ту же сходимость, что и исходная TODO: показать (видимо, это очевидно) (видимо, это чтолиможно, так как сумма полунорм является полунормой).
{{Определение
|definition=
Полунорма $q$ '''мажорирует''' полунорму $p$, если $\exists C \forall x \in X: p(x) \le C q(x)$.<br>Пусть заданы системы $\{p_n\}, \{q_n\}$ на $X$, тогда $\{q_n\}$ '''мажорирует''' $\{p_n\}$ если каждая полунорма из $\forall {p_n \exists q_{m_n} \forall x \in X: p_n(x) < c_n q_{m_n}(x)$, $c_n$ — константа. TODO не пойму, $q_{m_n}$ означает просто что мажорируется какой-то номер полунормой из $m\{q_n\}$, свой для конкретного $n$ или что?.
}}
Две монотонные системы полунорм эквивалентны тогда и только тогда, когда они мажорируют друг друга.
|proof=
В обратную сторону: пусть они мажорируют друг другарассмотрим любую полунорму $p_m$: по мажорируемости, тогда $q_n\exists q_k \exists M: p_m(x_n - x) \le c_n p_mM q_k(x_n - x)$, то есть из сходимости но $p_mq_k(x_n - x)\to 0$ следует сходимость по сходимости $q_n(x)x_n$. Аналогично из по системе полунорм $p_n(x) \le c_n q_m(x)q$ и сходимости . Абсолютно симметрично для случая, когда $q_m(x)p$ следует сходимость мажорирует $p_n(x)q$.
В прямую сторону: TODO пусть системы $p$ и $q$ эквивалентны. Установим, что$q$ мажорирует $p$, то что $p$ мажорирует $q$ доказывается аналогично. Докажем от противного: пусть существует $p_{M}$, не мажорируемая ни одной полунормой из $q$, то есть $\forall n \in \mathbb{N} \exists x_n \in X: p_M(x_n) > n q_n(x_n)$. По гомогенности(можно вынести константу) полунормы, если вместо $x_n$ взять $y_n = {x_n \over p_M(x_n)}$, неравенство все еще будет соблюдаться, а норма $p_M(y_n)$ будет равна $1$, то есть получили $1 > n q_n(y_n)$ и последовательность $y_n$ по полунорме $p_M$ не сходится к 0. Покажем, что $y_n \to 0$ по полунормам системы $q$, то есть $\forall m: q_m \xrightarrow[n \to \infty]{} 0$: для каждого конкретного $m$ возьмем члены $y$ начиная с $m$-того элемента, тогда $\forall n \ge m: q_m(y_n) \le q_n(y_n)$ (это по монотонности) $\le {1 \over n}$ (по уже доказанному), устремив $n \to \infty$ получаем, что каждая конкретная полунорма стремится к нулю, то я нифига есть по системе $p$ последовательность $y_n$ не понял в конспектесходится, а по $q$ — сходится, противоречие.
}}
Критерий нормируемости счетно-нормированного пространства: система полунорм {{Определение|definition=Полунорма $p_n$ в системе $p$ '''существенна''', если она не мажорируется ни одной из предыдущих полунорм (TODO пшшш в скобках)этой системы с меньшими чем $n$ номерами.}}
{{Теорема
|about=критерий нормируемости счетно-нормированного пространства
|statement=
Пусть $X$ — счетное-нормированное пространство по монотонной системе полунорм$p$. Оно нормируется тогда и только тогда, когда в системе $p$ конечное число существенных полунорм.
|proof=
TODOВ прямую сторону: пусть $X$ нормируемо нормой <math> \| \cdot \| </math>. Тогда по определению нормируемости счетно-нормированного пространства, система полунорм из <math>\| \| </math> эквивалентна системе полунорм $p$. Тогда <math> \| \| </math> мажорируется некоторой полунормой $p_N$ по предыдущей теореме, то есть существует постоянная $C$ такая, что <math>\forall x \in X: \|x\| \le C p_N(x)</math>. Покажем от противного, что в этой системе существенных полунорм не осознал формулировку может быть больше $N$: пусть такая полунорма с номером $m > N$ есть, тогда она должна мажорироваться полунормой <math> \| \| </math>, то есть существует постоянная $D$ такая, что <math> \forall x \in X: p_m(x) \le D \|x\| </math>. Но тогда, комбинируя два неравенства, получим <math> \forall x \in X: p_m(x) \le C D p_N(x) </math> , то есть полунорма номером $m$ мажорируется полунормой с номером $N < m$, то есть она не может быть существенной. В обратную сторону: пусть в системе $p$ конечное число существенных полунорм. Возьмем из существенных полунорм полунорму с наибольшим номером, пусть это $p_N$. Пусть $p_N(x) = 0$, тогда все полунормы с меньшими $N$ номерами также равны нулю по монотонности. Полунормы с большими номерами мажорируются $p_N$, так как-то$p_N$ по своему выбору последняя существенная полунорма, и тогда если $p_N(x) = 0$, все полунормы с большими номерами также равны нулю. Таким образом, да из условия согласованности имеем $x = 0$ и вообще мутнополунорму $p_N$ можно взять как искомую норму.
}}
</wikitex> [[Категория: Функциональный анализ 3 курс]]
Анонимный участник

Навигация