Изменения

Перейти к: навигация, поиск

Счетно-нормированные пространства

279 байт добавлено, 19:21, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{В разработке}}<wikitex>
$C^p [a; b]$ — пространство непрерывных на $[a; b]$ функций, первые $p$ производных которых также непрерывны. $\| f \| = \sum\limits_{k=0}^p \max\limits_{t \in [a; b]} | f^{(k)}(t)|$
Счетно-нормированные пространства можно метризовать как $\mathbb{R}^{\infty}$: $\rho(x, y) = \sum\limits_{n=1}^{\infty} {1 \over 2^n} {p_n(x - y) \over 1 + p_n(x - y)}$.
|proof=
# Очевидно, $\rho(x, xy) \ge 0$, рассмотрим, когда $\rho(x, y) = 0$, это значит, что $\forall n: p_n(x - y) = 0$, по определению счетно-нормированного пространства это означает, что $x - y = 0 \implies x = y$.
# Очевидно
# Проверяется аналогично [[Метрические пространства#rinfcoordconv | доказательства метризуемости $R^\infty$]], рассмотрим функцию $f(t) = \frac{t}{1 + t}$, для нее выполняется $f(t_1) < f(t_2)$ при $t_1 < t_2$ и $f(t_1 + t_2) < f(t_1) + f(t_2)$ для всех $t_1, t_2 > 0$. Рассмотрим каждое $p_n(x - z) = p_n((x - y) + (y - z)) \le p_n(x - y) + p_n(y - z)$. Тогда $f(p_n(x - z)) \le f(p_n(x - y) + p_n(y - z)) \le f(p_n(x - y)) + f(p_n(y - z))$. Тогда и $\sum\limits_n \frac{1}{2^n} \frac{p_n(x - z)}{1 + p_n(x - z)} \le \sum\limits_n \frac{1}{2^n} \frac{p_n(x - y)}{1 + p_n(x - y)} + \sum\limits_n \frac{1}{2^n} \frac{p_n(y - z)}{1 + p_n(y - z)}$, что и требовалось доказать.
}}
Можно считать, что система полунорм всегда удовлетворяет условию монотонности, так как произвольную систему $\{ p_n \}$ можно преобразовать в $q_n = \sum\limits_{k=1}^n p_k$, которая определяет ту же сходимость, что и исходная (видимо, это очевидно)(видимо, это можно, так как сумма полунорм является полунормой).
{{Определение
В обратную сторону: рассмотрим любую полунорму $p_m$: по мажорируемости, $\exists q_k \exists M: p_m(x_n - x) \le M q_k(x_n - x)$, но $q_k(x_n - x) \to 0$ по сходимости $x_n$ по системе полунорм $q$. Абсолютно симметрично для случая, когда $p$ мажорирует $q$.
В прямую сторону: пусть системы $p$ и $q$ эквивалентны. Установим, что $q$ мажорирует $p$, то что $p$ мажорирует $q$ доказывается аналогично. Докажем от противного: пусть существует $p_{M}$, не мажорируемая ни одной полунормой из $q$, то есть $\forall n \in \mathbb{N} \exists x_n \in X: p_M(x_n) > n q_n(x_n)$. По гомогенности (можно вынести константу) полунормы, если вместо $x_n$ взять $y_n = {x_n \over p_M(x_n)}$, неравенство все еще будет соблюдаться, а норма $p_M(y_n)$ будет равна $1$, то есть получили $1 > n q_n(y_n)$ и последовательность $y_n$ по полунорме $p_M$ не сходится к 0.
Покажем, что $y_n \to 0$ по полунормам системы $q$, то есть $\forall m: q_m \xrightarrow[n \to \infty]{} 0$: для каждого конкретного $m$ возьмем члены $y$ начиная с $m$-того элемента, тогда $\forall n \ge m: q_m(y_n) \le q_n(y_n)$ (это по монотонности) $\le {1 \over n}$ (по уже доказанному), устремив $n \to \infty$ получаем, что каждая конкретная полунорма стремится к нулю, то есть по системе $p$ последовательность $y_n$ не сходится, а по $q$ — сходится, противоречие.
Пусть $X$ — счетное-нормированное пространство по монотонной системе полунорм $p$. Оно нормируется тогда и только тогда, когда в системе $p$ конечное число существенных полунорм.
|proof=
В прямую сторону: пусть $X$ нормируемо нормой $<math> \| \cdot \|$</math>. Тогда по определнию определению нормируемости счетно-нормированного пространства, система полунорм из $<math>\| \|$ </math> эквивалентна системе полунорм $p$. Тогда $<math> \| \|$ </math> мажорируется некоторой полунормой $p_N$ по предыдущей теореме, то есть существует постоянная $C$ такая, что $<math>\forall x \in X: \|x\| \le C p_N(x)$</math>. Покажем от противного, что в этой системе существенных полунорм не может быть больше $N$: пусть такая полунорма с номером $m > N$ есть, тогда она должна мажорироваться полунормой $<math> \| \|$</math>, то есть существует постоянная $D$ такая, что $<math> \forall x \in X: p_m(x) \le D \|x\|$</math>. Но тогда, комбинируя два неравенства, получим $<math> \forall x \in X: p_m(x) \le C D p_N(x)$</math> , то есть полунорма номером $m$ мажорируется полунормой с номером $N < m$, то есть она не может быть существенной.
В обратную сторону: пусть в системе $p$ конечное число существенных полунорм. Возьмем из существенных полунорм полунорму с наибольшим номером, пусть это $p_N$. Пусть $p_N(x) = 0$, тогда все полунормы с меньшими $N$ номерами также равны нулю по монотонности. Полунормы с большими номерами мажорируются $p_N$, так как $p_N$ по своему выбору последняя существенная полунорма, и тогда если $p_N(x) = 0$, все полунормы с большими номерами также равны нулю. Таким образом, из условия согласованности имеем $x = 0$ и полунорму $p_N$ можно взять как искомую норму.
}}
</wikitex>
[[Категория: Функциональный анализ 3 курс]]
1632
правки

Навигация