Таблица инверсий — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм построения за O(N))
(Алгоритм построения за O(N))
Строка 78: Строка 78:
 
         Answer += Bank[i].size
 
         Answer += Bank[i].size
 
     '''return''' Answer
 
     '''return''' Answer
 +
'''Краткое описание алгоритма выше''':
  
Известно что карманная сортировка имеет линейную сложность, но только в том случае если элементы равномерно распределены. Т.к. мы ищем кол-во инверсий в перестановке то мы знаем что наши элементы встречаются на отрезке от <tex>[1;n]</tex> единожды , а следовательно равномерно распределены.
+
a) Все элементы раскидываются по карманам.
 +
 
 +
b) Каждый карман сортируется сортировкой вставками.
 +
 
 +
 
 +
В Кормене описываются мат. выкладки, доказывающие линейность карманной сортировки.
 +
Что касается инверсий, то по сути дела в приведенной реализации происходит карманная сортировка в online режиме и вся мат.часть из Кормена подходит и под этот случай.
  
 
Сложность представленного алгоритма есть <tex>O(n)</tex>.
 
Сложность представленного алгоритма есть <tex>O(n)</tex>.
 +
 +
Хотя подсчет с помощью карманной сортировки выполняется за линейное время, но имеет очень большую константу т.ч. подсчет с помощью дерева Фенвика(которая выполняется за <tex>O(n*log(n))</tex>) часто работает быстрее рассматриваемого в данном случае.
 +
 +
Также следует учитывать с помощью какой сортировки вставлять элемент каждый раз. Если размер кармана не велик, то возможно лучше подойдет эффективная реализация квадратичной сортировки, иначе лучше использовать одну из быстрых сортировок. Известно, что маленькие массивы лучше сортировать квадратичной сортировкой. Но как узнать границу, после которой массив перестает быть маленьким? В общем случае эта верхняя граница находится между 32 и 40. У Тима Петерсона в Tim Sort'e это 64(правда это на Python'e).
  
 
== Алгоритм восстановления ==
 
== Алгоритм восстановления ==

Версия 10:15, 7 января 2017

Пусть [math] P = (p_1,p_2,\dots,p_n)[/math] является перестановкой чисел [math] 1, 2,\dots, n[/math].


Определение:
Инверсией (англ. inversion) в перестановке [math]P[/math] называется всякая пара индексов [math]i, j[/math] такая, что [math]1\leqslant i\lt j\leqslant n[/math] и [math]P[i]\gt P[j][/math].


Определение:
Таблицей инверсий (англ. inversion table) перестановки [math] P [/math] называют такую последовательность [math] T = (t_1,t_2,\dots,t_n)[/math], в которой [math]t_i[/math] равно числу элементов перестановки [math] P [/math], стоящих в [math] P [/math] левее числа [math]i[/math] и больших [math]i[/math].


Алгоритм построения за O(N2)

Таблицу инверсий тривиально построить по определению. Для каждого элемента перестановки считаем количество элементов, больших данного и стоящих в перестановке левее него. Алгоритм построения в псевдокоде выглядит так:

T[1..n] = 0
for i = 1..n
  for j = 1..(i - 1)
    if P[j] > P[i]
      T[P[i]] = T[P[i]]++

Сложность данного алгоритма — [math]O(n^2)[/math]. Уменьшить время работы можно используя алгоритм, похожий на сортировку слиянием.

Алгоритм построения за O(N log N)

Пусть дано разбиение перестановки на два списка, причём для каждого элемента дано число инверсий слева с элементами того же списка и известно, что все числа первого списка стоят левее всех чисел второго списка в исходной перестановке. Будем считать количество инверсий слева элементов обоих списков следующим образом: сливаем списки, аналогично сортировке слиянием.

Если в результат нужно записать элемент первого списка, то все нерассмотренные элементы второго списка больше, следовательно, количество инверсий для этого элемента не меняется. Если в результат нужно записать элемент второго списка, то все нерассмотренные элементы первого списка больше его и стоят левее. Следовательно, количество инверсий для этого элемента следует увеличить на количество нерассмотренных элементов первого списка.

Описанный алгоритм записывается в псевдокод следующим образом:

// inverses_merge — процедура, сливающая два списка пар
// inverses_get — процедура, рекурсивно получающая таблицу инверсий для перестановки
def inverses_merge(ls1, ls2):
  result = []
  it1, it2 = null
  while (it1 < ls1.length) and (it2 < ls2.length)
   if ls1[it1].item < ls2[it2].item
      result.append(ls1[it1])
      it1++
    else
      result.append(item = ls2[it2].item, inverses = ls2[it2].inverses + ls1.length - it1)
      it2++
  while it1 < ls1.length
    result.append(ls1[it1])
    it1++
  while it2 < ls2.length
    result.append(ls2[it2])
    it2++
  return result

def inverses_get(ls):
  if ls.length == 1
    return [(item = ls[0], inverses = 0)]
  else
    return inverses_merge(inverses_get(ls.first_half), inverses_get(ls.second_half))


Сложность представленного алгоритма есть [math]O(n\log n)[/math]. Алгоритм с такой же сложностью можно построить с помощью дерева отрезков.

Алгоритм построения за O(N)

Для построения таблицы инверсий за линейное время воспользуемся карманной сортировкой. При карманной сортировке нужно определить карман [math]B[/math], в который попадет текущий элемент. Затем найти количество элементов в старших карманах относительно [math]B[/math]. Потом аккуратно подсчитать количество элементов, больших текущего в кармане [math]B[/math]. Карман [math]A[/math] считается старшим для кармана [math]B[/math], если любой элемент из [math]A[/math] больше любого элемента из [math]B[/math].


int bucket_sort(vector<int> Permutation):
   MAX = число больше Permutation.size и из которого можно извлечь целый квадратный корень
   BUCKET=sqrt(MAX)
   int Answer = 0 // изначально кол-во инверсий
   list<list<int>> Bank(BUCKET)
   for i = 0 to Permutation.size 
     int Position = (Permutation[i] - 1)/(MAX / BUCKET) // Определяем в каком кармане должен лежать элемент
     int NewPosition = 0
     while(NewPosition < Bank[pos].size && Bank[pos][NewPosition] < Permutation[i] ) // идем до позиции где должен стоять элемент Permutation[i]  
        NewPosition++
     Answer += Bank[pos].size - NewPosition // ищем сколько инверсий эленент создает в своем кармане
     Bank[pos].insert( NewPosition , Permutation[i] ) // вставляем элемент в Карман на свою позицию 
     for i = Position + 1 to BUCKET-1 // ищем сколько инверсий он создает с элементами в других карманах
       Answer += Bank[i].size
   return Answer

Краткое описание алгоритма выше:

a) Все элементы раскидываются по карманам.

b) Каждый карман сортируется сортировкой вставками.


В Кормене описываются мат. выкладки, доказывающие линейность карманной сортировки. Что касается инверсий, то по сути дела в приведенной реализации происходит карманная сортировка в online режиме и вся мат.часть из Кормена подходит и под этот случай.

Сложность представленного алгоритма есть [math]O(n)[/math].

Хотя подсчет с помощью карманной сортировки выполняется за линейное время, но имеет очень большую константу т.ч. подсчет с помощью дерева Фенвика(которая выполняется за [math]O(n*log(n))[/math]) часто работает быстрее рассматриваемого в данном случае.

Также следует учитывать с помощью какой сортировки вставлять элемент каждый раз. Если размер кармана не велик, то возможно лучше подойдет эффективная реализация квадратичной сортировки, иначе лучше использовать одну из быстрых сортировок. Известно, что маленькие массивы лучше сортировать квадратичной сортировкой. Но как узнать границу, после которой массив перестает быть маленьким? В общем случае эта верхняя граница находится между 32 и 40. У Тима Петерсона в Tim Sort'e это 64(правда это на Python'e).

Алгоритм восстановления

Для восстановления перестановки по таблицы инверсий [math]T[/math] воспользуемся следующим соображением: единица стоит в перестановке на [math]T_0[/math]-ом месте (индексируем элементы с нуля), так как остальные числа в перестановке больше единицы. Далее, если известны расположения всех чисел [math]1, \dots, k[/math], то число [math]k + 1[/math] стоит на [math]T_{k + 1}[/math]-ой ещё не занятой позиции: все числа, меньшие [math]k + 1[/math] уже расставлены. Это рассуждение напрямую переписывается в код следующим образом:

// j — счётчик пропущенных свободных позиций
// k — количество инверсий слева для элемента curr
// result — массив, в который записывается перестановка. Равенство элемента массива нулю обозначает, что эта позиция свободна.
def recover_straight(ls):
  n = ls.length
  result = array(0, n)
  curr = 1
  for k in ls
   j = 0
    for i = 0..(n - 1)
      if result[i] == 0
        if  j == k
          result[i] = curr
          break
        else:
          j++
    curr++
  return result


Этот простой алгоритм имеет сложность [math]O(n^2)[/math] — внутренний цикл делает до [math]n[/math] итераций, внешний — ровно [math]n[/math] итераций.

Видно, что для восстановления нужно узнавать [math]k[/math]-ую свободную позицию. Это можно делать с помощью дерева отрезков следующим образом: построим дерево отрезков для суммы на массиве из единиц. Единица в позиции означает, что данная позиция свободна. Чтобы найти [math]k[/math]-ую свободную позицию, нужно спускаться (начиная с корня) в левое поддерево если сумма в нём больше, чем [math]k[/math], и в правое дерево иначе.

Данный алгоритм переписывается в код следующим образом:

// build_segment_tree — строит дерево отрезков над массивом
// node — вершина дерева
// node.index — индекс соответствующего элемента в массиве для листа дерева
def recover(inv):
  n = inv.length
  tree = build_segment_tree(array(n, 1))
  result = array(n)
  curr = 1
  for k in inv
    node = tree.root
    while !node.is_leaf
      if k < node.left.value
        node = node.left
      else
        k -= node.left.value
        node = node.right
    result[node.index] = curr
    node.add(-1)
    curr++
  return result


Этот алгоритм имеет сложность [math]O(n \log n)[/math]: делается [math]n[/math] итераций цикла, в которой происходит спуск по дереву высоты [math]O(\log n)[/math] и один запрос на дереве отрезков. Таким образом, время работы алгоритма на каждой итерации есть [math]O(\log n)[/math].

Пример

Рассмотрим пример построения таблицы инверсий и восстановления перестановки по таблице инверсий. Пусть дана перестановка [math](5, 7, 1, 3, 4, 6, 8, 2)[/math]. Следующая таблица показывает работу алгоритма за [math]O(n \log n)[/math], на каждой строке один уровень рекурсии (на первой строке — самый глубокий). В скобках стоят пары: элемент перестановки, количество инверсий. Полужирным отмечены элементы, у которых обновилось значение количества инверсий на данном шаге.

(5, 0) (7, 0) (1, 0) (3, 0) (4, 0) (6, 0) (8, 0) (2, 0)
(5, 0), (7, 0) (1, 0), (3, 0) (4, 0), (6, 0) (2, 1), (8, 0)
(1, 2), (3, 2), (5, 0), (7, 0) (2, 3), (4, 0), (6, 0), (8, 0)
(1, 2), (2, 6), (3, 2), (4, 2), (5, 0), (6, 1), (7, 0), (8, 0)

Полученная таблица инверсий: [math](2, 6, 2, 2, 0, 1, 0, 0)[/math]. Восстановим перестановку по таблице инверсий, начиная с пустого массива.

[math]0[/math] [math]0[/math] [math]\bf{1}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] пропускаем две свободных позиции и ставим [math]\bf{1}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]\bf{2}[/math] пропускаем шесть свободных позиций и ставим [math]\bf{2}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]\bf{3}[/math] [math]0[/math] [math]0[/math] [math]0[/math] [math]2[/math] пропускаем две свободных позиции и ставим [math]\bf{3}[/math]
[math]0[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]\bf{4}[/math] [math]0[/math] [math]0[/math] [math]2[/math] пропускаем две свободных позиции и ставим [math]\bf{4}[/math]
[math]\bf{5}[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]0[/math] [math]0[/math] [math]2[/math] не пропускаем свободных позиции и ставим [math]\bf{5}[/math]
[math]5[/math] [math]0[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]\bf{6}[/math] [math]0[/math] [math]2[/math] пропускаем одну свободную позицию и ставим [math]\bf{6}[/math]
[math]5[/math] [math]\bf{7}[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]6[/math] [math]0[/math] [math]2[/math] не пропускаем свободных позиций и ставим [math]\bf{7}[/math]
[math]5[/math] [math]7[/math] [math]1[/math] [math]3[/math] [math]4[/math] [math]6[/math] [math]\bf{8}[/math] [math]2[/math] не пропускаем свободных позиций и ставим [math]\bf{8}[/math]

См. также

Источники информации