Теорема Банаха об обратном операторе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 57: Строка 57:
  
 
<tex> Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) </tex>, поэтому <tex> y \in R(A) </tex>.
 
<tex> Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) </tex>, поэтому <tex> y \in R(A) </tex>.
 +
}}
 +
 +
{{Теорема
 +
|statement=
 +
Пусть <tex> A : X \to Y </tex> {{---}} линейный ограниченный оператор, и <tex> m \| x \| \le \| Ax \| </tex>.
 +
Тогда <tex> A </tex> непрерывно обратим.
 +
|proof=
 +
{{TODO|t=Упражнение, доказать самим. Необходимо заткнуть.}}
 +
}}
 +
 +
{{Теорема
 +
|about=Банаха, о гомеоморфизме
 +
|statement=
 +
Пусть <tex> A : X \xrightarrow[]{bijective} Y </tex> {{---}} линейный ограниченный оператор.
 +
Тогда <tex> A^{-1} </tex> {{---}} линейный ограниченный оператор.
 +
|proof=
 +
 +
Докажем для начала лемму.
 +
 +
{{Утверждение
 +
|statement=
 +
<tex> A : X \xrightarrow[]{linear} Y </tex>. Обозначим <tex> X_n = \{ x \in X: \| Ax \| \le n \| x \| \} </tex>.
 +
Тогда хотя бы одно <tex> X_n </tex> ''всюду плотно в <tex> X </tex>''.
 +
|proof=
 +
Очевидно, что <tex> X = \bigcup\limits_{n=1}^{\infty} </tex>, <tex> X </tex> {{---}} B-пространство (а значит, и полное метрическое), значит, по теореме Бэра о категориях, <tex> X </tex> {{---}} 2 категории в себе <tex> \implies </tex> в каком-то шаре <tex> \overline{V_r(a)} </tex> есть такое <tex> X_{n_0} </tex>, что оно всюду плотно в этом шаре.
 +
 +
Рассмотрим кольцо: <tex> \{z \mid \frac r2 \le \| z - a \| \le r \} </tex>. Обозначим <tex> y = z - a </tex>, тогда кольцо имеет следующий вид: <tex> \{z \mid \frac r2 \le \| y \| \le r \} </tex> {{---}} кольцо с центром в <tex> 0 </tex>.
 +
 +
При параллельном переносе свойство всюду плотности сохраняется.
 +
}}
 +
 
}}
 
}}

Версия 07:01, 4 января 2013

Эта статья находится в разработке!


Определение:
Оператор [math] A : X \to Y [/math] называется непрерывно обратимым, если существует [math] A^{-1} : Y \to X [/math] и [math] \| A^{-1} \| \lt \infty [/math].


Теорема:
Пусть [math] X [/math] — B-пространство, оператор [math] C : X \to X, C \in \mathbb{L}(X) [/math] и [math] \| C \| \lt 1 [/math]. Тогда оператор [math] I - C [/math], где [math] I [/math] — тождественный оператор, непрерывно обратим.
Доказательство:
[math]\triangleright[/math]

[math] \mathbb{L}(X) [/math] — B-пространство.

Рассмотрим следующие суммы: [math] S_n = \sum\limits_{k=0}^n C^k [/math].

[math] (I - C)S_n = \sum\limits_{k=0}^n (C^k - C^{k + 1}) = I - C^{n + 1} [/math].

[math] \sum\limits_{k=0}^{\infty} C^k [/math] — ряд в B-пространстве [math] \mathbb{L}(X) [/math] сходится, если сходится ряд из соответствующих норм. Из того, что [math] \| C^k \| \le \| C \|^k [/math], получаем [math] \| \sum\limits_{k=0}^{\infty} C^k \| \le \sum\limits_{k=0}^{\infty} \| C^k \| = \frac 1{1 - \| C \|} \lt \infty [/math].

Так как [math] \| C \| \lt 1 [/math], то существует такой [math] S \in \mathbb{L}(X) [/math], что [math] S = \sum\limits_{k=0}^{\infty} C^k [/math].

[math] S_n \xrightarrow[n \to \infty]{} S [/math]. Поскольку [math] \| C \| \lt 1 [/math], то [math] \| C^k \| \to 0 [/math], а значит, и [math] C^k \to 0 [/math]. TODO: красивый ноль

[math] (I - C)S_n = I - C^{n + 1} [/math]. Устремляя [math] n [/math] к бесконечности, получаем [math] (I - C)S = I [/math], а значит [math] S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} [/math] — ограниченный оператор.
[math]\triangleleft[/math]

Трактовка этой теоремы: [math] Ix = x [/math], [math] I [/math] — непрерывно обратимый оператор. При каких условиях на оператор [math] C [/math] оператор [math] I - C [/math] сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда [math] \| C \| \lt 1 [/math], то есть "при малых возмущениях [math] I [/math] сохраняется его непрерывная обратимость".

Далее считаем, что пространства [math] X [/math] и [math] Y [/math] — всегда банаховы.


Определение:
Рассмотрим уравнение [math] Ax = y [/math] при заданном [math] y [/math]. Если для такого уравнения можно написать [math] \| x \| \le \alpha \| y \| [/math], где [math] \alpha [/math] — константа, то говорят, что это уравнение допускает априорную оценку решений. TODO: Это для всех y сразу, или для каждого y своя константа?


[math] R(A) = \{ Ax \mid x \in X \} [/math] — область значений оператора [math] A [/math], является линейным множеством, но может быть незамкнутым. Однако, верно следующее:

Утверждение:
Если [math] A [/math] непрерывен, и уравнение [math] Ax = y [/math] допускает априорную оценку решений, то [math] R(A) = \mathrm{Cl} R(A) [/math].
[math]\triangleright[/math]

Возьмем сходящуюся последовательсть [math] y_n \in R(A), y_n \to y [/math]. Нужно проверить, правда ли [math] y \in R(A) [/math], или, что то же самое, что уравнение [math] Ax = y [/math] имеет решение для такого [math] y [/math].

[math] y_n \to y \implies \| y_n - y_m \| \to 0 [/math]. Можно выбрать такую подпоследовательность [math] y_n [/math], что для этой подпоследовательности после перенумерации будет выполняться [math] \| y_n - y_{n+1} \| \lt \frac 1{2^n} [/math].

По линейности [math] R(A) [/math]: [math] y_{n+1} - y_n \in R(A) [/math] и для любого [math] n [/math] существует [math] x_n: A x_n = y_{n+1} - y_n [/math].

Поскольку уравнение [math] Ax = y [/math] допускает априорную оценку решений, имеем [math] \| x_n \| \le \alpha \| y_{n+1} - y_n \| [/math].

Рассмотрим следующий ряд: [math] \sum\limits_{n=1}^{\infty} x_n [/math]. Сумма ряда из норм: [math] \sum\limits_{n=1}^{\infty} \| x_n \| \le \alpha \sum\limits_{n=1}^{\infty} \| y_{n+1} - y_n \| \le \alpha \sum\limits_{n=1}^{\infty} \frac 1{2^n} = \alpha [/math]. По банаховости [math] X [/math] получаем, что [math] \sum\limits_{n=1}^{\infty} x_n [/math] сходится, и [math] \sum\limits_{n=1}^{\infty} x_n = x [/math].

По непрерывности [math] A [/math] получаем, что [math] Ax = A \sum\limits_{n=1}^{\infty} x_n = \sum\limits_{n=1}^{\infty} A x_n = \sum\limits_{n=1}^{\infty} y_{n+1} - y_n = y - y_1 [/math].

[math] Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) [/math], поэтому [math] y \in R(A) [/math].
[math]\triangleleft[/math]
Теорема:
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор, и [math] m \| x \| \le \| Ax \| [/math]. Тогда [math] A [/math] непрерывно обратим.
Доказательство:
[math]\triangleright[/math]
TODO: Упражнение, доказать самим. Необходимо заткнуть.
[math]\triangleleft[/math]
Теорема (Банаха, о гомеоморфизме):
Пусть [math] A : X \xrightarrow[]{bijective} Y [/math] — линейный ограниченный оператор. Тогда [math] A^{-1} [/math] — линейный ограниченный оператор.
Доказательство:
[math]\triangleright[/math]

Докажем для начала лемму.

Утверждение:
[math] A : X \xrightarrow[]{linear} Y [/math]. Обозначим [math] X_n = \{ x \in X: \| Ax \| \le n \| x \| \} [/math]. Тогда хотя бы одно [math] X_n [/math] всюду плотно в [math] X [/math].
[math]\triangleright[/math]

Очевидно, что [math] X = \bigcup\limits_{n=1}^{\infty} [/math], [math] X [/math] — B-пространство (а значит, и полное метрическое), значит, по теореме Бэра о категориях, [math] X [/math] — 2 категории в себе [math] \implies [/math] в каком-то шаре [math] \overline{V_r(a)} [/math] есть такое [math] X_{n_0} [/math], что оно всюду плотно в этом шаре.

Рассмотрим кольцо: [math] \{z \mid \frac r2 \le \| z - a \| \le r \} [/math]. Обозначим [math] y = z - a [/math], тогда кольцо имеет следующий вид: [math] \{z \mid \frac r2 \le \| y \| \le r \} [/math] — кольцо с центром в [math] 0 [/math].

При параллельном переносе свойство всюду плотности сохраняется.
[math]\triangleleft[/math]
[math]\triangleleft[/math]