Изменения

Перейти к: навигация, поиск

Теорема Банаха об обратном операторе

17 байт добавлено, 00:28, 22 июня 2014
Теорема о замкнутом графике
<tex> (I - C)S_n = \sum\limits_{k=0}^n (C^k - C^{k + 1}) = I - C^{n + 1} </tex>.
<tex> \sum\limits_{k=0}^{\infty} C^k </tex> {{---}} ряд в B-пространстве <tex> {L}(X) </tex> сходится, если сходится ряд из соответствующих норм. Покажем это: пусть есть операторный ряд <tex>\sum\limits_{i=1}^\infty A_i</tex>. Рассмотрим последовательность частичных сумм <tex>S_n = \sum\limits_{i=1}^n A_i</tex>, она будет сходиться если сходится в себе (по Банаховости пространства). Тогда <tex>S_n - S_m = \sum\limits_{i=m}^{n} A_i</tex>, а <tex>\|S_n - S_m\| = \| \sum\limits_{i=m}^n A_i \| \le \sum\limits_{i=m}^n \|A_i\|</tex> (так как для конечного числа членов норма суммы меньше суммы норм), но так как последовательность норм сходится, она также сходится в себе и <tex>\sum\limits_{i=m}^n \|A_i\| \xrightarrow[n, m \to \infty]{} 0</tex>, то есть частичные суммы сходятся в себе, а, значит, и сходятся.
Из того, что <tex> \| C^k \| \le \| C \|^k </tex>, получаем <tex> \left\| \sum\limits_{k=0}^{\infty} C^k \right\| \le
<tex> S_n \xrightarrow[n \to \infty]{} S </tex>. Поскольку <tex> \| C \| < 1 </tex>, то <tex> \| C^k \| \to 0 </tex>, а значит, и <tex> C^k \to \mathbb{O} </tex>.
<tex> (I - C)S_n = I - C^{n + 1} </tex>. Устремляя <tex> n </tex> к бесконечности, получаем <tex> (I - C)S = I </tex>, а значит <tex> S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} </tex> {{---}} ограниченный оператор.
}}
{{Теорема
|id=
invlb
|statement=
Пусть <tex> A : X \to Y </tex> {{---}} линейный ограниченный оператор, и <tex>\exists m > 0: m \| x \| \le \| Ax \| </tex>.
{{Теорема
|id=banachhom
|about=Банаха, о гомеоморфизме
|statement=
Можно показать, что <tex> X \times Y </tex> банахово с нормой <tex> \| (x, y) \| = \| x \| + \| y \| </tex>:
* То, что <tex>\| (x, y) \| = \|x\| + \|y\|</tex> — норма, показывается очевидно
* Покажем, что если <tex>(x_n, y_n)</tex> сходится в себе, то она сходится к элементу <tex>X \times Y</tex>. Рассмотрим последовательность <tex>\|(x_n, y_n) - (x_m, y_m) \| \xrightarrow[n, m \to \infty]{} 0</tex>, значит, <tex>\|(x_n - x_nx_m, y_m y_n - y_m)\| = \|x_n - x_m\| + \|y_n - y_m\| \to 0</tex>, то есть <tex>x_n</tex> и <tex>y_n</tex> сходятся в себе, а значит, по полноте пространств <tex>X</tex> и <tex>Y</tex>, существует <tex>x \in X = \lim x_n, y \in Y = \lim y_n</tex>. Значит, <tex>(x, y) \in X \times Y</tex>. Далее очевидно показывая, что <tex>\|(x_n, y_n) - (x, y)\| \xrightarrow[n \to \infty]{} 0</tex>, покажем, что <tex>x, y</tex> и есть нужный предел.
Рассмотрим следующий оператор: <tex> T : G(A) \to X, T(x, Ax) = x </tex>.
Анонимный участник

Навигация