Теорема Банаха об обратном операторе

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!


Определение:
Оператор [math] A : X \to Y [/math] называется непрерывно обратимым, если существует [math] A^{-1} : Y \to X [/math] и [math] \| A^{-1} \| \lt \infty [/math].


Теорема:
Пусть [math] X [/math] — B-пространство, оператор [math] C : X \to X, C \in \mathbb{L}(X) [/math] и [math] \| C \| \lt 1 [/math]. Тогда оператор [math] I - C [/math], где [math] I [/math] — тождественный оператор, непрерывно обратим.
Доказательство:
[math]\triangleright[/math]

[math] \mathbb{L}(X) [/math] — B-пространство.

Рассмотрим следующие суммы: [math] S_n = \sum\limits_{k=0}^n C^k [/math].

[math] (I - C)S_n = \sum\limits_{k=0}^n (C^k - C^{k + 1}) = I - C^{n + 1} [/math].

[math] \sum\limits_{k=0}^{\infty} C^k [/math] — ряд в B-пространстве [math] \mathbb{L}(X) [/math] сходится, если сходится ряд из соответствующих норм. Из того, что [math] \| C^k \| \le \| C \|^k [/math], получаем [math] \| \sum\limits_{k=0}^{\infty} C^k \| \le \sum\limits_{k=0}^{\infty} \| C \|^k = \frac 1{1 - \| C \|} \lt \infty [/math].

Так как [math] \| C \| \lt 1 [/math], то существует такой [math] S \in \mathbb{L}(X) [/math], что [math] S = \sum\limits_{k=0}^{\infty} C^k [/math].

[math] S_n \xrightarrow[n \to \infty]{} S [/math]. Поскольку [math] \| C \| \lt 1 [/math], то [math] \| C^k \| \to 0 [/math], а значит, и [math] C^k \to 0 [/math]. TODO: красивый ноль

[math] (I - C)S_n = I - C^{n + 1} [/math]. Устремляя [math] n [/math] к бесконечности, получаем [math] (I - C)S = I [/math], а значит [math] S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} [/math] — ограниченный оператор.
[math]\triangleleft[/math]

Трактовка этой теоремы: [math] Ix = x [/math], [math] I [/math] — непрерывно обратимый оператор. При каких условиях на оператор [math] C [/math] оператор [math] I - C [/math] сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда [math] \| C \| \lt 1 [/math], то есть "при малых возмущениях [math] I [/math] сохраняется его непрерывная обратимость".

Далее считаем, что пространства [math] X [/math] и [math] Y [/math] — всегда банаховы.


Определение:
Рассмотрим уравнение [math] Ax = y [/math] при заданном [math] y [/math]. Если для такого уравнения можно написать [math] \| x \| \le \alpha \| y \| [/math], где [math] \alpha [/math] — константа, то говорят, что это уравнение допускает априорную оценку решений. TODO: Это для всех y сразу, или для каждого y своя константа?


[math] R(A) = \{ Ax \mid x \in X \} [/math] — область значений оператора [math] A [/math], является линейным множеством, но может быть незамкнутым. Однако, верно следующее:

Утверждение:
Если [math] A [/math] непрерывен, и уравнение [math] Ax = y [/math] допускает априорную оценку решений, то [math] R(A) = \mathrm{Cl} R(A) [/math].
[math]\triangleright[/math]

Возьмем сходящуюся последовательсть [math] y_n \in R(A), y_n \to y [/math]. Нужно проверить, правда ли [math] y \in R(A) [/math], или, что то же самое, что уравнение [math] Ax = y [/math] имеет решение для такого [math] y [/math].

[math] y_n \to y \implies \| y_n - y_m \| \to 0 [/math]. Можно выбрать такую подпоследовательность [math] y_n [/math], что для этой подпоследовательности после перенумерации будет выполняться [math] \| y_n - y_{n+1} \| \lt \frac 1{2^n} [/math].

По линейности [math] R(A) [/math]: [math] y_{n+1} - y_n \in R(A) [/math] и для любого [math] n [/math] существует [math] x_n: A x_n = y_{n+1} - y_n [/math].

Поскольку уравнение [math] Ax = y [/math] допускает априорную оценку решений, имеем [math] \| x_n \| \le \alpha \| y_{n+1} - y_n \| [/math].

Рассмотрим следующий ряд: [math] \sum\limits_{n=1}^{\infty} x_n [/math]. Сумма ряда из норм: [math] \sum\limits_{n=1}^{\infty} \| x_n \| \le \alpha \sum\limits_{n=1}^{\infty} \| y_{n+1} - y_n \| \le \alpha \sum\limits_{n=1}^{\infty} \frac 1{2^n} = \alpha [/math]. По банаховости [math] X [/math] получаем, что [math] \sum\limits_{n=1}^{\infty} x_n [/math] сходится, и [math] \sum\limits_{n=1}^{\infty} x_n = x [/math].

По непрерывности [math] A [/math] получаем, что [math] Ax = A \sum\limits_{n=1}^{\infty} x_n = \sum\limits_{n=1}^{\infty} A x_n = \sum\limits_{n=1}^{\infty} y_{n+1} - y_n = y - y_1 [/math].

[math] Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) [/math], поэтому [math] y \in R(A) [/math].
[math]\triangleleft[/math]
Теорема:
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор, и [math] m \| x \| \le \| Ax \| [/math]. Тогда [math] A [/math] непрерывно обратим.
Доказательство:
[math]\triangleright[/math]
TODO: Упражнение, доказать самим. Необходимо заткнуть.
[math]\triangleleft[/math]

Перед доказательством теоремы Банаха о гомеоморфизме докажем для начала вспомогательную лемму.

Утверждение:
[math] A : X \xrightarrow[]{linear} Y [/math]. Обозначим [math] X_n = \{ x \in X: \| Ax \| \le n \| x \| \} [/math]. Тогда хотя бы одно [math] X_n [/math] всюду плотно в [math] X [/math].
[math]\triangleright[/math]

Очевидно, что [math] X = \bigcup\limits_{n=1}^{\infty} [/math], [math] X [/math] — B-пространство (а значит, и полное метрическое), значит, по теореме Бэра о категориях, [math] X [/math] — 2 категории [math] \implies [/math] в каком-то шаре [math] \overline{V_r(a)} [/math] есть такое [math] X_{n_0} [/math], что оно всюду плотно в этом шаре.

Рассмотрим кольцо: [math] \{z \mid \frac r2 \le \| z - a \| \le r \} [/math]. Обозначим [math] y = z - a [/math], тогда кольцо имеет следующий вид: [math] \{\frac r2 \le \| y \| \le r \} [/math] — кольцо с центром в [math] 0 [/math].


TODO: Какие-то странные шевеления руками. Разобраться При параллельном переносе свойство всюду плотности множества [math] X_{n_0} [/math] сохраняется.

Будем рассматривать [math] z \in X_{n_0} \cap \{\frac r2 \le \| z - a \| \le r \} [/math].

[math] y = z - a, \| Ay \| = \frac {\| A(z - a) \|}{\| y \|} \| y \| \le \frac 2r (\| Az \| + \| Aa \|) \| y \| [/math], так как [math] \| y \| \ge \frac r2 [/math].

Поскольку [math] z \in X_{n_0} [/math], то [math] \| Az \| \le n_0 \| z \| [/math]. [math] \| z \| \le \| a \| + \| z - a \| \le r + \| a \| [/math], так как [math] z [/math] принадлежит кольцу.

Подставляем и продолжаем неравенство выше: [math] \| Ay \| \le \frac2r (n_0 (r + \| a \|) + \| Aa \|) \| y \| [/math].

Обозначим [math] m = \lceil (n_0 (r + \| a \|) + \| Aa \|) \rceil [/math] (это выражение не зависит от [math] y [/math]), получаем, что [math] \| Ay \| \le m \| y \| \implies y \in X_m [/math].

Итак, получили, что [math] X_m [/math] всюду плотно в кольце с центром в [math] 0 [/math]. Возьмем теперь любой [math] x \in X [/math], его можно представить как [math] x = tz, z \in \{\frac r2 \le \| z \| \le r \} [/math].

По доказанному выше, [math] \exists y_p \in X_m \cap \{\frac r2 \le \| z \| \le r \}, y_p \to z [/math]. Но [math] ty_p \to tz = x [/math]. [math] \| A(ty_p) \| \le m \| t y_p \| \implies ty_p \in X_m [/math].

Взяв любую точку из [math] X [/math], мы можем приблизить ее элементами [math] ty_p \in X_m [/math], а значит, [math] X_m [/math] всюду плотно в [math] X [/math].
[math]\triangleleft[/math]

На основе доказанной леммы можем доказать теорему:

Теорема (Банаха, о гомеоморфизме):
Пусть [math] A : X \xrightarrow[]{bijective} Y [/math] — линейный ограниченный оператор. Тогда [math] A^{-1} [/math] — линейный ограниченный оператор.
Доказательство:
[math]\triangleright[/math]

Если [math] A [/math] — биекция, то [math] A^{-1} [/math] существует. Осталось показать, что он будет непрерывен.

[math] Y_n = \{ y \in Y \mid \| A^{-1}(y) \| \le n \| y \| \} [/math].

Существует такое число [math] n_0 [/math], что [math] Y_{n_0} = Y^*, \overline{Y^*} = Y [/math] (по доказанной лемме).

Зафиксируем [math] y [/math]. Существует такое разложение [math] y = \sum\limits_1^{\infty} y_n [/math], что [math] y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| [/math]. Покажем, как его получить.


TODO: Ниже где-то потерялась норма y. Вроде она должна быть.

Для любого [math] \varepsilon [/math] можно подобрать [math] y_1 : \| y - y_1 \| \lt \varepsilon \| y \| [/math]. Дальше можно подобрать [math] y_2 : \| (y - y_1) - y_2 \| \lt \frac {\varepsilon}2 \| y \| [/math], и так далее...

Получаем, что [math] \| y - \sum\limits_{k = 1}^n y_k \| \lt \frac {\varepsilon}{2^{n-1}} \| y \| [/math].

[math] \| y_n \| \le \| y - \sum\limits_{k = 1}^n y_k \| + \| y - \sum\limits_{k = 1}^{n - 1} y_k \| \le \frac {\varepsilon}{2^{n-1}} \| y \| + \frac {\varepsilon}{2^{n-2}} \| y \| = \frac {3\varepsilon}{2^{n-1}} \| y \| [/math]

В качестве [math] \varepsilon [/math] выберем [math] \frac 12 [/math], и получим необходимое разложение [math] y [/math].

Итак, теперь [math] y = \sum\limits_1^{\infty} y_n, y_n \in Y^*, \| y_n \| \le \frac 3{2^n} \| y \| [/math].

Обозначим [math] x_n = A^{-1}(y_n) [/math]. Рассмотрим ряд из [math] x_n [/math]: [math] \sum\limits_{n=1}^{\infty} x_n [/math]: правда ли, что ряд из норм сходится? [math] \sum\limits_{n=1}^{\infty} \| x_n \| \lt \infty [/math].

Вспомним, что [math] y_n \in Y_{n_0} [/math].

[math] \| x_n \| = \| A^{-1}(y_n) \| \le n_0 \| y_n \| \le n_0 \frac 3{2^n} \| y \| [/math]: ряд из [math] \| x_n \| [/math] мажорируется убывающей геометрической прогрессией, а значит, сходится. Получили, что существует [math] x = \sum\limits_{n=1}^{\infty} x_n [/math].

Используем непрерывность [math] A [/math]: [math] Ax = \sum\limits_{n=1}^{\infty} Ax_n = \sum\limits_{n=1}^{\infty} y_n = y [/math], получили, что [math] Ax = y, A^{-1}(y) = x [/math].

Рассмотрим норму [math] A^{-1}(y) [/math]: [math] \| A^{-1}(y) \| = \| x \| = \| \sum\limits_{n=1}^{\infty} x_n \| \le \sum\limits_{n=1}^{\infty} 3n_0 \| y \| \frac 1{2^n} = 3n_0 \| y \| [/math].

Поскольку [math] y [/math] выбирался произвольный, получаем, что [math] A^{-1} [/math] ограничен.
[math]\triangleleft[/math]

Выведем пару важных следствий.


Определение:
[math] A : X \xrightarrow[]{linear} Y [/math]. Графиком оператора [math] A [/math] называется множество [math] G(A) = \{ (x, Ax) \mid x \in X \}, G(A) \subset X \times Y [/math].


В прямых произведениях множеств сходимость — покоординатная, поэтому можно говорить о замкнутости множеств.

Теорема (о замкнутом графике):
[math] A : X \xrightarrow[]{linear} Y [/math]. [math] A [/math] — ограничен [math] \iff [/math] [math] G(A) [/math] — замкнут.
Доказательство:
[math]\triangleright[/math]

Докажем в прямую сторону: пусть есть последовательность пар [math] (x_n, y_n) \to (x, y) [/math]. Принадлежит ли [math] (x, y)\, G(A) [/math] ?

[math] y_n = Ax_n, x_n \to x \implies Ax_n \to Ax, y_n \to y \implies Ax=y [/math] (по единственности предела). Так как [math] Ax = y [/math], то [math] (x, Ax) = (x, y) \in G(A) [/math].

Обратное следствие интереснее.

Пусть [math] G(A) = \{ (x, Ax) \mid x \in X \} [/math] замкнут.

Можно показать, что [math] X \times Y [/math] банахово с нормой [math] \| (x, y) \| = \| x \| + \| y \| [/math].

Рассмотрим следующий оператор: [math] T : (X \times Y) \to X, T(x, Ax) = x [/math]. [math] T [/math] биективно отображает [math] G(A) [/math] в [math] X [/math].

[math] \| x \| = \| T(x, Ax) \| \le \| (x, Ax) \| \implies T [/math] ограничен.

По теореме Банаха о гомеоморфизме, так как [math] T [/math] ограничен и биективен, то существует [math] T^{-1} [/math], который также ограничен. Рассмотрим его.

[math] T^{-1}(x) = (x, Ax), \| T^{-1}(x) \| = \| x \| + \| Ax \| \le M \| x \| [/math] (по ограниченности). Получаем, что [math] \| Ax \| \le (M - 1) \| x \| [/math], откуда [math] A [/math] ограничен.
[math]\triangleleft[/math]

Следующее следствие из теоремы Банаха связано с открытым отображением.


Определение:
[math] F : X \to Y [/math] — произвольное отображение. Если для любого открытого [math] G \subset X [/math] [math] F(G) [/math] открыто в [math] Y [/math], то [math] F [/math] называют открытым отображением.


Теорема (об открытом отображении):
Пусть [math] A : X \to Y [/math] — линейный ограниченный оператор. Тогда [math] A [/math] — открытое отображение.
Доказательство:
[math]\triangleright[/math]

[math] Z = \mathrm{Ker} A [/math] — линейное подпространство в [math] X [/math]. [math] X|_Z [/math] — фактор подпространства.

[math] i : X \to X|_Z, i(x) = [x][/math], где [math] [x] [/math] — класс смежности [math] x [/math].


TODO: Отсюда и до конца полный мрак

Такое отображение называют каноническим вложением. [math] i [/math] — линейный ограниченный оператор, который переводит открытое множество в [math] X [/math] в открытое множество в [math] X|_Z [/math]. TODO: доказать это

[math] U_A : X|_Z \to Y, U_A([x]) = Ax [/math] — оператор, ассоциированный с [math] A [/math].

[math] A = U_A \cdot i [/math], причем по построению ясно (нифига не ясно), что разные классы он переводит в разные точки [math] Y [/math].

[math] U_A : X|_Z \xrightarrow[]{bijective} R(A) \implies U_A^{-1} [/math] — ограничен (по теореме Банаха), значит [math] U_A [/math] открыт, суперпозиция открытых открыта, а, получается, и [math] A [/math] открыт.
[math]\triangleleft[/math]