Редактирование: Теорема Бейкера-Гилла-Соловэя

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 10: Строка 10:
  
 
2) <tex>B</tex>:<tex>L_B=\{x|\exists{y}\subset{B}:|x|=|y|\}</tex>
 
2) <tex>B</tex>:<tex>L_B=\{x|\exists{y}\subset{B}:|x|=|y|\}</tex>
 
Будем строить B такое, чтобы для всех М.Т. из Р с оракулом С, данная машина тьюринга "ошибалась" на входе некоторой длины, при ответе на вопрос, есть ли в B слово той же длины, что и вход.
 
 
Положим множество B  пустым.
 
1. Переберем все машины тьюринга. Их счетное множество, каждая работает за полином.
 
2. Для текущей МТ найдем первую длину i, такую что для всех слов длины не менее i ни одна из уже отработавших МТ ничего не спрашивала про них у оракула.
 
3. Опишем поведение подходящего оракула. Пусть, если МТ М запущена на длине i, и задает вопросы оракулу C. Если М спросит С про слово длины не менее i, С должен ответить 0, одновременно запомнив, что это слово никогда не должно оказаться в В. Если же М спросит про уже включенные в В слова, С должен ответить 1.
 
4. Теперь заметим, что так как М работает за полином, а ни про одно слово из i ничего не известно, то М не успеет спросить про все слова длины i, их экспоненциальное количество, значит будет хотя бы одно слово длины i, про которое М не спросит. Теперь, если М ответит 1, то нужно чтобы в В не было ни одного слова длины i, иначе - добавим в B первое в лексикографическом порядке слово из В длины i, про которое М не спрашивала.
 
5. вернемся на шаг 1.
 
 
готово, построено множество слов В, такое что ни одна машина тьюринга из P с оракулом не сможет разрешить, но очевидно, что это множество из NP с оракулом
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)