Изменения

Перейти к: навигация, поиск

Теорема Брукса

4 байта добавлено, 21:56, 17 января 2013
Нет описания правки
#Если <tex>G</tex> не является вершинно двусвязным графом, тогда в графе <tex> G</tex> <tex> \exists</tex> <tex> v \in V</tex>, где v {{---}} точка сочленения. Пусть <tex>G_1,G_2</tex> две компоненты связности полученный при удалении вершины <tex>v</tex>.Тогда, по выше доказанной лемме <tex>G_1,G_2</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.Поскольку количество соседей вершины <tex> v </tex> в каждой из компонент не более <tex> \Delta - 1</tex>, то <tex>G</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.
#Если в графе <tex> G</tex> <tex> \exists</tex> <tex> v,u \in V :(u,v) \notin E</tex> и при удалении вершин <tex>v,u</tex> граф теряет связность .Пусть <tex>G_1,G_2</tex> два подграфа <tex> G:G_1 \cap G_2 = \{v,u\} \land G_1 \cup G_2 = G</tex>. Рассмотрим два случая:
## Если в одном из подграфов <tex> G_1,G_2</tex> <tex> deg\ u < \le \Delta - 2 </tex> или <tex> deg\ v < \le \Delta - 2 </tex> то, подграфы <tex>G_1,G_2</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов так, чтобы вершины <tex> u,v </tex> были бы разных цветов.А из этого следует что, граф <tex>G</tex> тоже можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.
## Если степени обоих вершин в одном из подграфов равны <tex> \Delta - 1</tex> например в подграфе <tex>G_1</tex>:
##* <tex> G_1,G_2 </tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов так, чтобы вершины <tex> u,v </tex> были бы разных цветов.Тогда очевидно, что оценка теоремы выполнена.
50
правок

Навигация