Изменения

Перейти к: навигация, поиск

Теорема Жордана

214 байт убрано, 21:13, 25 июня 2012
м
Пример
{{В разработке}}
 
{{Определение
|definition=<tex>\|f\|_C = \sup |f(x)|</tex>
}}
{{Утверждение
<tex>\frac{f(x-0)+f(x+0)}2</tex>
|proof=
Пусть <tex>\sigma(f, x) = \frac{a_0}2 + \sum\limits_{n=1}^\infty (a_n \cos n\alpha nx + b_n \sin n\alphanx)</tex>.
Можно представить <tex>a_n \cos nx + b_n\sin nx </tex> как <tex> r_n \cos(nx + \phi_n)</tex>, где <tex>r_n=\sqrt{a_n^2 + b_n^2}</tex>.
Пусть <tex>f\in CV </tex> (<tex> f </tex> — непрерывная, ограниченной вариации). Тогда <tex> \forall x: f</tex> раскладывается в равномерно сходящийся ряд Фурье.
|proof=
Мы оцениваем Применим прошлую теорему. Получим, что сходится к числу <tex>\sum r_n^frac{f(x+0)+f(x-0)}{2}</tex>. Так как функция непрерывна, которое не зависит от <tex>f(x+0)=f(x-0)</tex>. Соединим прошлые результаты параграфа с ограниченной вариацией.{{TODO|t=Типа, вот оно и было?}}{{TODO|t=эм, надо как-то прокомментировать, чтоли}}{{TODO|t=Похоже, Николай Юрьевич забил на доказательство этой теоремы.}}
}}
Значение в <tex>\frac\pi2</tex>:
<tex>\sigma(f, \frac\pi2) = \sum\limits_{n=0}^\infty \frac4{\pi(2m+1)} \sin \frac{(2m+1)\pi}{2}</tex>
<tex>= \frac4\pi\sum\limits_{n=0}^\infty (-1)^m \frac1{2m+1}</tex><tex>= \frac{\pi}{4}1</tex>
===Пример===
403
правки

Навигация