Редактирование: Теорема Ладнера

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
'''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]].
 
'''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]].
 
== Иллюстрация ==
 
 
Определим язык <tex>A</tex> как множество таких формул <tex>\alpha</tex>,
 
что <tex>\left\lfloor \frac{1}{2}\log_{10}^*|\alpha|\right\rfloor</tex> чётно.
 
Иными словами, <tex>A</tex> — это язык формул с длинами, лежащими в промежутках
 
<tex>\left[1,10^{10}\right),
 
\left[\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_4,
 
\underbrace{10^{10^{\cdot^{\cdot^{10}}}}}_6\right), \ldots</tex>
 
Далее будем обозначать <tex>\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n</tex>
 
как <tex>^{n}a</tex>.
 
 
Рассмотрим язык [[SAT]] всех удовлетворимых формул. Логично предположить, что как в <tex>A</tex>,
 
так и в <tex>\bar{A}</tex> лежит бесконечное множество элементов из <tex>\mathrm{SAT}</tex>,
 
не распознаваемых за полиномиальное время, поэтому <tex>\mathrm{SAT} \cap A \not\in \mathrm{P}</tex>.
 
Из <tex>A \in \mathrm{P}</tex> и <tex>\mathrm{SAT} \in \mathrm{NP}</tex> следует, что <tex>\mathrm{SAT} \cap A \in \mathrm{NP}</tex>.
 
 
Осталось показать, что <tex>\mathrm{SAT} \cap A</tex> не является NP-полным. Пусть
 
это не так. Тогда из NP-полноты следует, что существует полиномиальная функция <math>f</math>,
 
[[Сведение по Карпу|сводящая по Карпу]] <tex>\mathrm{SAT}</tex> к <tex>\mathrm{SAT} \cap A</tex>.
 
 
Возьмём формулу <tex>\varphi</tex> длиной <tex>^{2k+1}10</tex>.
 
Она не лежит в <tex>A</tex> и, следовательно, в <tex>\mathrm{SAT} \cap A</tex>.
 
Функция <tex>f</tex> не может перевести <tex>\varphi</tex> в промежуток
 
<tex>\left[^{2k+2}10, ^{2k+4}10\right)</tex> или дальше, так как размер
 
выхода полиномиальной функции не может быть экспоненциально больше длины
 
входа. Значит, <tex>\varphi</tex> отображается в меньший промежуток, но
 
в этом случае размер выхода экспоненциально меньше длины входа.  Добавляя
 
к этому то, что проверку на принадлежность <tex>f(\varphi)</tex> к
 
<tex>\mathrm{SAT} \cap A</tex> можно осуществить за <tex>O(2^{poly})</tex>
 
(это следует из её принадлежности классу <tex>\mathrm{NP}</tex>), получаем программу,
 
разрешающую <tex>\varphi</tex> за полином. Утверждение о том, что все формулы
 
<tex>\varphi</tex> длиной <tex>^{2k+1}10</tex> принадлежат классу
 
<tex>\mathrm{P}</tex>, скорее всего неверно, и, следовательно, язык
 
<tex>\mathrm{SAT} \cap A</tex> не является NP-полным.
 
 
Заметим, что это объяснение не является доказательством!
 
 
== Теорема ==
 
  
 
{{Теорема
 
{{Теорема

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: