Редактирование: Теорема Понтрягина-Куратовского

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
Теорему доказал в 1927 году известный советский математик Лев Семенович Понтрягин, но не опубликовал.
+
Теорему доказал в 1927 году известный советский математик Лев Семенович Понтрягин, но не опубликовал. <br>
Независимо от Понтрягина в 1930 году доказательста нашел и впервые напечатал польский математик Казимир Куратовский.
+
Независимо от Понтрягина в 1930 году доказательста нашел и впервые напечатал польский математик Казимир Куратовский. <br>
Первые доказательства теоремы Понтрягина-Куратовского были очень сложными. Сравнительно простое доказательство нашел в 1997 г. петербургский школьник Юрий Макарычев. <br>  
+
Первые доказательства теоремы Понтрягина - Куратовского были очень сложными. Сравнительно простое доказательство нашел в 1997 г. петербургский школьник Юрий Макарычев. <br>  
 
<br>
 
<br>
  
Строка 11: Строка 11:
 
|proof =
 
|proof =
 
Заметим, что из планарности графа следует планарность гомеоморфного графа и наоборот. В самом деле, пусть <tex> G_1 </tex> {{---}} плоский граф.
 
Заметим, что из планарности графа следует планарность гомеоморфного графа и наоборот. В самом деле, пусть <tex> G_1 </tex> {{---}} плоский граф.
Если добавить на нужных ребрах вершины степени <tex> 2 </tex> и удалить некотрые вершины степени <tex> 2 </tex> в <tex> G_1 </tex>, получим укладку гомеоморфного графа <tex> G_2 </tex>. Таким образом, доказательство необходимости следует из [[Непланарность_K5_и_K3,3| непланарности <tex>K_5</tex> и <tex>K_{3, 3}</tex>]].
+
Если добавить на нужных ребрах вершины степени <tex> 2 </tex> и удалить некотрые вершины степени <tex> 2 </tex> в <tex> G_1 </tex>, получим укладку гомеоморфного графа <tex> G_2 </tex>. Таким образом, доказательство достаточности следует из [[Непланарность_K5_и_K3,3| непланарности <tex>K_5</tex> и <tex>K_{3, 3}</tex>]].
  
Докажем достаточность. От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> {{---}} такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.  
+
Докажем неоходимость. От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> {{---}} такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.  
 
=== G связен ===
 
=== G связен ===
 
Если <tex> G </tex>  не [[Отношение_связности,_компоненты_связности|связен]], то в силу минимальности <tex> G </tex> его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен.
 
Если <tex> G </tex>  не [[Отношение_связности,_компоненты_связности|связен]], то в силу минимальности <tex> G </tex> его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен.
Строка 47: Строка 47:
 
# Если <tex>|VB| \geqslant 3</tex>, то существует цикл графа G', содержащий вершины <tex> a </tex> и <tex> b </tex>.
 
# Если <tex>|VB| \geqslant 3</tex>, то существует цикл графа G', содержащий вершины <tex> a </tex> и <tex> b </tex>.
 
# Если <tex> |VB| = 2 </tex>, то в <tex> B </tex> имеется ребро <tex> e' = ab </tex>, но тогда в <tex> G </tex> имеются кратные рёбра <tex> e </tex> и <tex> e' </tex>, что невозможно.
 
# Если <tex> |VB| = 2 </tex>, то в <tex> B </tex> имеется ребро <tex> e' = ab </tex>, но тогда в <tex> G </tex> имеются кратные рёбра <tex> e </tex> и <tex> e' </tex>, что невозможно.
#Если вершины <tex> a </tex> и <tex> b </tex> лежат в разных блоках графа <tex> G' </tex>, что существует точка сочленения <tex> v </tex>, принадлежащая любой простой <tex> (a, b) </tex> {{---}} цепи графа <tex> G' </tex>. Через <tex> G'_1 </tex> обозначим подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами компоненты связности графа <tex> G' - v </tex>, содержащей <tex> a </tex>, а через <tex> G'_2 </tex> {{---}} подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами остальных компонент связности графа <tEx> G' - v </tex> (в этом множестве лежит вершина <tex> b </tex>). Пусть <tex> G''_1 = G'_1 + e_1 </tex>, где <tex> e_1 = vb </tex> {{---}} новое ребро.
+
#Если вершины <tex> a </tex> и <tex> b </tex> лежат в разных блоках графа <tex> G' </tex>, что существует точка сочленения <tex> v </tex>, принадлежащая любой простой <tex> (a, b) </tex> {{---}} цепи графа <tex> G' </tex>. Через <tex> G'_1 </tex> обозначим подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами компоненты связности графа <tex> G' - v </tex>, содержащей <tex> a </tex>, а через <tex> G'_2 </tex> {{---}} подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами остальных компонент связности графа <tEx> G' - v </tex> (в этом множестве лежит вершина <tex> b </tex>). Пусть <tex> G''_1 = G'_1 + e_1 </tex>, где <tex> e_1 = vb </tex> {{---}} новое ребро (рис. 4)
 
+
[[Файл:New.p-k.4.png|thumb|right|рис. 4]]
[[Файл:nb.pic.4.png|400px|рис. 4]]
 
 
 
 
Заметим, что в графе <tex> G''_1 </tex> рёбер меньше, чем в графе <tex> G </tex>. Действительно, вместо ребра <tex> e </tex> в <tex> G''_1 </tex> есть ребро <tex> e_1 </tex> и часть рёбер из графа <tex> G </tex> осталась в графе <tex> G''_2 </tex>. Аналогично, в графе <tex> G''_2 </tex> рёбер меньше, чем в графе <tex> G </tex>. <br/>
 
Заметим, что в графе <tex> G''_1 </tex> рёбер меньше, чем в графе <tex> G </tex>. Действительно, вместо ребра <tex> e </tex> в <tex> G''_1 </tex> есть ребро <tex> e_1 </tex> и часть рёбер из графа <tex> G </tex> осталась в графе <tex> G''_2 </tex>. Аналогично, в графе <tex> G''_2 </tex> рёбер меньше, чем в графе <tex> G </tex>. <br/>
Теперь в силу минимальности графа <tex> G </tex> графы <tex> G''_1 </tex> и <tex> G''_2 </tex> планарны. Возьмем укладку графа <tex> G''_1 </tex> на плоскости такую, что ребро <tex> e_1 = av </tex> лежит на границе внешней грани(ее существование доказывается аналогично существованию такой укладки для вершины графа). Во внешней грани графа <tex> G''_1 </tex> возьмем укладку графа <tex> G''_2 </tex> такую, что ребро <tex> e_2 = vb </tex> лежит па границе внешней грани.
+
Теперь в силу минимальности графа <tex> G </tex> графы <tex> G''_1 </tex> и <tex> G''_2 </tex> планарны. Возьмем укладку графа <tex> G''_1 </tex> на плоскости такую, что ребро <tex> e_1 = av </tex> лежит на границе внешней грани(ее существование доказывается аналогично существованию такой укладки для вершины графа). Во внешней грани графа <tex> G''_1 </tex> возьмем укладку графа <tex> G''_2 </tex> такую, что ребро <tex> e_2 = vb </tex> лежит па границе внешней грани (рис. 5).  
 
+
[[Файл:New.p-k.5.png|thumb|right|рис. 5]]
[[Файл:nb.pic.5.png|400px|рис. 5]]
+
Отметим, что опять вершина <tex> v </tex> представлена на плоскости в двух экземплярах. Очевидно, добавление ребра <tex> e = ab </tex> не меняет планарности графа <tex> G''_1 U G''_2</tex>. Склеим оба вхождения вершины <tex> v </tex> точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6).  
 
+
[[Файл:New.p-k.6.png|thumb|right|рис. 6]]
Отметим, что опять вершина <tex> v </tex> представлена на плоскости в двух экземплярах. Очевидно, добавление ребра <tex> e = ab </tex> не меняет планарности графа <tex> G''_1 U G''_2</tex>. Склеим оба вхождения вершины <tex> v </tex> точно так же, как это мы сделали в предыдущем пункте доказательства.
 
 
 
[[Файл:nb.pic.6.png|400px|рис. 6]]
 
 
 
 
Сотрем затем ранее добавленные ребра <tex> e_1 </tex> и <tex> e_2 </tex>. В результате мы получим укладку графа <tex> G </tex> на плоскости, что невозможно. Утверждение доказано.
 
Сотрем затем ранее добавленные ребра <tex> e_1 </tex> и <tex> e_2 </tex>. В результате мы получим укладку графа <tex> G </tex> на плоскости, что невозможно. Утверждение доказано.
  
Строка 77: Строка 71:
 
<b>Внешними частями</b> (англ. ''Outside parts'') будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами , либо рёбра графа <tex>G'</tex>, лежащие снаружи от цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами.
 
<b>Внешними частями</b> (англ. ''Outside parts'') будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами , либо рёбра графа <tex>G'</tex>, лежащие снаружи от цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами.
 
}}
 
}}
[[Файл:nb.pic.7.png|440px|рис. 7]]
+
[[Файл:pict-1.jpg|center|200px|рис. 7]][[Файл:pict-2.jpg|center|125px|рис. 8]]
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Строка 98: Строка 92:
 
|proof =  
 
|proof =  
 
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно.
 
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно.
 
+
[[Файл:pict-3.jpg|center|рис. 9]]
[[Файл:nb.pic.8.png|420px|рис. 8]]
 
 
 
 
Таким образом, внешняя часть встречает цикл <tex>C</tex> не менее чем в двух точках. Если внешняя часть встречает цикл <tex>C</tex> в двух точках из <tex>C[a,b]</tex> (случай <tex>C[b,a]</tex> рассматривается аналогично), то в <tex>G'</tex> имеется цикл, содержащий внутри себя больше граней, чем цикл <tex>C</tex>, и проходящий через <tex>a</tex> и <tex>b</tex>, что невозможно.
 
Таким образом, внешняя часть встречает цикл <tex>C</tex> не менее чем в двух точках. Если внешняя часть встречает цикл <tex>C</tex> в двух точках из <tex>C[a,b]</tex> (случай <tex>C[b,a]</tex> рассматривается аналогично), то в <tex>G'</tex> имеется цикл, содержащий внутри себя больше граней, чем цикл <tex>C</tex>, и проходящий через <tex>a</tex> и <tex>b</tex>, что невозможно.
 
+
[[Файл:pict-4.jpg|center|рис. 10]]
[[Файл:nb.pic.9.png|420px|рис. 9]]
 
 
 
 
Итого, внешняя часть встречает цикл <tex>C</tex> хотя бы в двух точках, никакие две из которых не лежат в <tex>C[a,b]</tex> и <tex>C[b,a]</tex>. То есть ровно одна лежит в <tex>C(a,b)</tex> и ровно одна {{---}} в <tex>C(b,a)</tex>.
 
Итого, внешняя часть встречает цикл <tex>C</tex> хотя бы в двух точках, никакие две из которых не лежат в <tex>C[a,b]</tex> и <tex>C[b,a]</tex>. То есть ровно одна лежит в <tex>C(a,b)</tex> и ровно одна {{---}} в <tex>C(b,a)</tex>.
 
}}
 
}}
Строка 111: Строка 101:
 
Ввиду леммы 1 будем говорить, что любая внешняя часть является <b><tex>(a,b)</tex> {{---}} разделяющей частью</b> (англ. ''separating part''), поскольку она встречает и <tex>C(a,b)</tex>, и <tex>C(b,a)</tex>.
 
Ввиду леммы 1 будем говорить, что любая внешняя часть является <b><tex>(a,b)</tex> {{---}} разделяющей частью</b> (англ. ''separating part''), поскольку она встречает и <tex>C(a,b)</tex>, и <tex>C(b,a)</tex>.
 
}}  
 
}}  
Аналогично можно ввести понятие <tex>(a,b)</tex> {{---}} разделяющей внутренней части. Заметим, что внутренняя часть может встречать цикл <tex>C</tex>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
+
Аналогично можно ввести понятие <tex>(a,b)</tex> {{---}} разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <tex>C</tex>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
 
{{Лемма
 
{{Лемма
 
|about=2
 
|about=2
Строка 117: Строка 107:
 
Существует хотя бы одна <tex>(a,b)</tex> {{---}} разделяющая внутренняя часть.
 
Существует хотя бы одна <tex>(a,b)</tex> {{---}} разделяющая внутренняя часть.
 
|proof =
 
|proof =
Пусть, от противного, таких частей нет. Тогда, выходя из <tex>a</tex> внутри области, ограниченной <tex>C</tex>, и двигаясь вблизи от <tex>C</tex> по направлению обхода <tex>C</tex> и вблизи от встречающихся внутренних частей, можно уложить ребро <tex>e = ab</tex> внутри цикла <tex>C</tex>, т.е. <tex>G</tex> {{---}} планарный граф, что невозможно.
+
Пусть, от противного, таких частей нет. Тогда, выходя из <tex>a</tex> внутри области, ограниченной <tex>C</tex>, и двигаясь вблизи от <tex>C</tex> по направлению обхода <tex>C</tex> и вблизи от встречающихся внутренних частей, можно уложить ребро <tex>e = ab</tex> внутри цикла <tex>C</tex>, т.е. <tex>G</tex> {{---}} планарный граф, что невозможно.[[Файл:pict-5.jpg|center|180px|рис. 11]]
 
 
[[Файл:nb.pic.10.png|280px|рис. 10]]
 
 
 
 
}}
 
}}
 
{{Лемма
 
{{Лемма
 
|about=3
 
|about=3
 
|statement =
 
|statement =
Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> {{---}} в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex> {{---}} разделяющей и <tex>(c,d)</tex> {{---}} разделяющей. <br>
+
Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> {{---}} в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex> {{---}} разделяющей и <tex>(c,d)</tex> {{---}} разделяющей.
 
+
[[Файл:pict-6.jpg|center|160px|рис. 12]]
[[Файл:nb.pic.11.png|240px|рис. 11]]
 
 
 
 
|proof =
 
|proof =
Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex> {{---}} разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},\dots</tex> Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> {{---}} первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> {{---}} первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex>.
+
Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex> {{---}} разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex> Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> {{---}} первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> {{---}} первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex>.
 
+
[[Файл:pict-7.jpg|center|200px|рис. 13]]
[[Файл:nb.pic.12.png|310px|рис. 12]]
 
 
 
 
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью.
 
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью.
 
Аналогично все остальные <tex>(a,b)</tex> {{---}} разделяющие внутренние части можно перебросить во внешнюю область от цикла <tex>C</tex>. После этого точно так же, как в доказательстве леммы 2, ребро <tex>e = ab</tex> можно уложить внутри цикла <tex>C</tex>, так как не останется <tex>(a,b)</tex> {{---}} разделяющих внутренних частей. Следовательно, мы получим укладку графа <tex>G</tex>, что невозможно.
 
Аналогично все остальные <tex>(a,b)</tex> {{---}} разделяющие внутренние части можно перебросить во внешнюю область от цикла <tex>C</tex>. После этого точно так же, как в доказательстве леммы 2, ребро <tex>e = ab</tex> можно уложить внутри цикла <tex>C</tex>, так как не останется <tex>(a,b)</tex> {{---}} разделяющих внутренних частей. Следовательно, мы получим укладку графа <tex>G</tex>, что невозможно.
Строка 204: Строка 187:
 
==Источники информации==
 
==Источники информации==
 
*  [https://ru.wikipedia.org/wiki/Планарный_граф Википедия {{---}} Планарный граф]
 
*  [https://ru.wikipedia.org/wiki/Планарный_граф Википедия {{---}} Планарный граф]
*  [http://en.wikipedia.org/wiki/Kuratowski's_theorem Wikipedia {{---}} Kuratowski's theorem]
+
*  [http://en.wikipedia.org/wiki/Kuratowski's_theorem Wikipedia {{---}} Kuratowski's_theorem]
 
*  [http://acm.math.spbu.ru/~sk1/download/books/TheoremKuratowski.pdf "Вокруг критерия Куратовского планарности графов" (стр. 118)]  
 
*  [http://acm.math.spbu.ru/~sk1/download/books/TheoremKuratowski.pdf "Вокруг критерия Куратовского планарности графов" (стр. 118)]  
 
*  Асанов М., Баранский В., Расин В. {{---}}  Дискретная математика {{---}}  Графы, матроиды, алгоритмы
 
*  Асанов М., Баранский В., Расин В. {{---}}  Дискретная математика {{---}}  Графы, матроиды, алгоритмы

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)