Теорема Понтрягина-Куратовского — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 41: Строка 41:
  
  
Среди всех укладок графа <math>G'</math> на плоскости и среди всех циклов <math>C</math>, содержащих <math>a</math> и <math>b</math>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <math>C</math>, лежит максимальное возможное число граней графа <math>G'</math>. Зафиксируем один из обходов по циклу <math>C</math> (на рисунках будем рассматривать обход по часовой стрелке по циклу <math>C</math>). Для вершин <math>u</math> и <math>v</math> цикла <math>C</math> через <math>C[u,v]</math> будем обозначать простую <math>(u,v)</math>-цепь, идущую по циклу <math>C</math> от <math>u</math> до <math>v</math> в направлении обхода цикла. Конечно, <math>C[u,v] C[v,u]</math>. Положим <math>C(u,v) = C[u,v] \ {u,v}</math>, т.е. <math>C(u,v)</math> получено из <math>C[u,v]</math> отбрасыванием вершин <math>u</math> и <math>v</math>.
+
Среди всех укладок графа <tex>G'</tex> на плоскости и среди всех циклов <tex>C</tex>, содержащих <tex>a</tex> и <tex>b</tex>, зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом <tex>C</tex>, лежит максимальное возможное число граней графа <tex>G'</tex>. Зафиксируем один из обходов по циклу <tex>C</tex> (на рисунках будем рассматривать обход по часовой стрелке по циклу <tex>C</tex>). Для вершин <tex>u</tex> и <tex>v</tex> цикла <tex>C</tex> через <tex>C[u,v]</tex> будем обозначать простую <tex>(u,v)</tex>-цепь, идущую по циклу <tex>C</tex> от <tex>u</tex> до <tex>v</tex> в направлении обхода цикла. Конечно, <tex>C[u,v] \ne C[v,u]</tex>. Положим <tex>C(u,v) = C[u,v] \setminus</tex> {<tex>u,v</tex>}, т.е. <tex>C(u,v)</tex> получено из <tex>C[u,v]</tex> отбрасыванием вершин <tex>u</tex> и <tex>v</tex>.
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Внешним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими снаружи от цикла <math>C</math>.
+
Внешним графом (относительно цикла <tex>C</tex>) будем называть подграф графа <tex>G'</tex>, порождённый всеми вершинами графа <tex>G'</tex>, лежащими снаружи от цикла <tex>C</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 50: Строка 50:
 
Внешними компонентами будем называть компоненты связности внешнего графа.
 
Внешними компонентами будем называть компоненты связности внешнего графа.
 
}}
 
}}
В силу связности графа <math>G'</math> для любой внешней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
+
В силу связности графа <tex>G'</tex> для любой внешней компоненты должны существовать рёбра в <tex>G'</tex>, соединяющие её с вершинами цикла <tex>C</tex>.
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Внешними частями будем называть:
+
Внешними частями будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами, либо рёбра графа <tex>G'</tex>, лежащие снаружи от цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами
    a) внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <math>C</math>, и инцидентными им вершинами;
 
    б) рёбра графа <math>G'</math>, лежащие снаружи от цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами.
 
 
}}
 
}}
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Внутренним графом (относительно цикла <math>C</math>) будем называть подграф графа <math>G'</math>, порождённый всеми вершинами графа <math>G'</math>, лежащими внутри цикла <math>C</math>.
+
Внутренним графом (относительно цикла <tex>C</tex>) будем называть подграф графа <tex>G'</tex>, порождённый всеми вершинами графа <tex>G'</tex>, лежащими внутри цикла <tex>C</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 65: Строка 63:
 
Внутренними компонентами будем называть компоненты связности внутреннего графа.
 
Внутренними компонентами будем называть компоненты связности внутреннего графа.
 
}}
 
}}
В силу связности графа <math>G'</math> для любой внутренней компоненты должны существовать рёбра в <math>G'</math>, соединяющие её с вершинами цикла <math>C</math>.
+
В силу связности графа <tex>G'</tex> для любой внутренней компоненты должны существовать рёбра в <tex>G'</tex>, соединяющие её с вершинами цикла <tex>C</tex>.
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Внутренними частями будем называть:
+
Внутренними частями будем называть внутренние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <tex>C</tex>, и инцидентными им вершинами, либо рёбра графа <tex>G'</tex>, лежащие внутри цикла <tex>C</tex> и соединяющие две вершины из <tex>C</tex>, вместе с инцидентными такому ребру вершинами
    a) внутренние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла <math>C</math>, и инцидентными им вершинами;
 
    б) рёбра графа <math>G'</math>, лежащие внутри цикла <math>C</math> и соединяющие две вершины из <math>C</math>, вместе с инцидентными такому ребру вершинами.
 
 
}}
 
}}
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <math>C</math> в своих точках прикрепления к циклу <math>C</math>.
+
Будем говорить, что внешняя (внутренняя) часть ''встречает цикл'' <tex>C</tex> в своих точках прикрепления к циклу <tex>C</tex>.
{{Утверждение 5
+
{{Теорема
 
|statement =
 
|statement =
Любая внешняя часть встречает цикл <math>C</math> точно в двух точках, одна из которых лежит в <math>C(a,b)</math>, а другая - в <math>C(b,a)</math>.
+
5) Любая внешняя часть встречает цикл <tex>C</tex> точно в двух точках, одна из которых лежит в <tex>C(a,b)</tex>, а другая - в <tex>C(b,a)</tex>.
 
|proof =  
 
|proof =  
Если внешняя часть встречает цикл <math>C</math> точно в одной точке <math>v</math>, то <math>v</math> является точкой сочленения графа <math>G</math>, что невозможно.
+
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно.
Таким образом, внешняя часть встречает цикл <math>C</math> не менее чем в двух точках. Если внешняя часть встречает цикл <math>C</math> в двух точках из <math>C[a,b]</math> (случай <math>C[b,a]</math> рассматривается аналогично), то в <math>G'</math> имеется цикл, содержащий внутри себя больше граней, чем цикл <math>C</math>, и проходящий через <math>a</math> и <math>b</math>, что невозможно.
+
Таким образом, внешняя часть встречает цикл <tex>C</tex> не менее чем в двух точках. Если внешняя часть встречает цикл <tex>C</tex> в двух точках из <tex>C[a,b]</tex> (случай <tex>C[b,a]</tex> рассматривается аналогично), то в <tex>G'</tex> имеется цикл, содержащий внутри себя больше граней, чем цикл <tex>C</tex>, и проходящий через <tex>a</tex> и <tex>b</tex>, что невозможно.
Итого, внешняя часть встречает цикл <math>C</math> хотя бы в двух точках, никакие две из которых не лежат в <math>C[a,b]</math> и <math>C[b,a]</math>. То есть ровно одна лежит в <math>C[a,b]</math> и ровно одна - в <math>C[b,a]</math>.
+
Итого, внешняя часть встречает цикл <tex>C</tex> хотя бы в двух точках, никакие две из которых не лежат в <tex>C[a,b]</tex> и <tex>C[b,a]</tex>. То есть ровно одна лежит в <tex>C[a,b]</tex> и ровно одна - в <tex>C[b,a]</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <math>(a,b)</math>-разделяющей частью, поскольку она встречает и <math>C(a,b)</math>, и <math>C(b,a)</math>.
+
Ввиду утверждения 5 будем говорить, что любая внешняя часть является <tex>(a,b)</tex>-разделяющей частью, поскольку она встречает и <tex>C(a,b)</tex>, и <tex>C(b,a)</tex>.
 
}}  
 
}}  
Аналогично можно ввести понятие <math>(a,b)</math>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <math>C</math>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
+
Аналогично можно ввести понятие <tex>(a,b)</tex>-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл <tex>C</tex>, вообще говоря, более чем в двух точках, но не менее чем в двух точках.
{{Утверждение 6
+
{{Теорема
 
|statement =  
 
|statement =  
Существует хотя бы одна <math>(a,b)</math>-разделяющая внутренняя часть.
+
6) Существует хотя бы одна <tex>(a,b)</tex>-разделяющая внутренняя часть.
 
|proof =
 
|proof =
Пусть, от противного, таких частей нет. Тогда, выходя из <math>a</math> внутри области, ограниченной <math>C</math>, и двигаясь вблизи от <math>C</math> по направлению обхода <math>C</math> и вблизи от встречающиъся внутренних частей, можно уложить ребро <math>e = ab</math> внутри цикла <math>C</math>, т.е. <math>G</math> - планарный граф, что невозможно.
+
Пусть, от противного, таких частей нет. Тогда, выходя из <tex>a</tex> внутри области, ограниченной <tex>C</tex>, и двигаясь вблизи от <tex>C</tex> по направлению обхода <tex>C</tex> и вблизи от встречающиъся внутренних частей, можно уложить ребро <tex>e = ab</tex> внутри цикла <tex>C</tex>, т.е. <tex>G</tex> - планарный граф, что невозможно.
 
}}
 
}}
{{Утверждение 7
+
{{Теорема
 
|statement =
 
|statement =
Существует внешняя часть, встречающая <math>C(a,b)</math> в точке <math>c</math> и <math>C(b,a)</math> - в точке <math>d</math>, для которой найдётся внутренняя часть, являющаяся одновременно <math>(a,b)</math>-разделяющей и <math>(c,d)</math>-разделяющей.
+
7) Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> - в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex>-разделяющей и <tex>(c,d)</tex>-разделяющей.
 
|proof =
 
|proof =
Пусть, от противного, утверждение 7 неверно. Упорядочим <math>(a,b)</math>-разделяющие внутренние части в порядке их прикрепления к циклу <math>C</math> при движении по циклу от <math>a</math> до <math>b</math> и обозначим их соответственно через <math>In_{1},In_{2},...</math>. Пусть <math>u_{1}</math> и <math>u_{2}</math> - первая и последняя вершины из <math>C(a,b)</math>, в которых <math>In_{1}</math> встречает цикл <math>C</math>, а <math>v_{1}</math> и <math>v_{2}</math> - первая и последняя вершины из <math>C(b,a)</math>, в которых <math>In_{1}</math> встречает цикл <math>C</math> (возможно, вообще говоря, <math>u_{1} = u_{2}</math> или <math>v_{1} = v_{2}</math>). Поскольку 7 неверно, для любой внешней части обе её вершины, в которых она встречает <math>C</math>, лежат либо на <math>C[v_{2},u_{1}]</math>, либо на <math>C[u_{2},v_{1}]</math>. Тогда снаружи цикла <math>C</math> можно провести жорданову кривую <math>P</math>, не пересекая рёбер графа <math>G'</math>, соединяющую <math>v_{2}</math> с <math>u_{1}</math>.
+
Пусть, от противного, утверждение 7 неверно. Упорядочим <tex>(a,b)</tex>-разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex>. Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> - первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> - первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку 7 неверно, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex>.
Поскольку на участках <math>C(u_{1},u_{2})</math> и <math>C(v_{1},v_{2})</math> нет точек прикрепления внешних частей, используя жорданову кривую <math>P</math>, внутреннюю часть <math>In_{1}</math> можно перебросить ("вывернуть" наружу от цикла <math>C</math>) во внешнюю область цикла <math>C</math>, т.е. уложить её снаружи от цикла <math>C</math> и сделать её внешней частью.
+
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью.
Аналогично все остальные <math>(a,b)</math>-разделяющие внутренние части можно перебросить во внешнюю область от цикла <math>C</math>. После этого точно так же, как в доказательстве утверждения 6, ребро <math>e = ab</math> можно уложить внутри цикла <math>C</math>, так как не останется <math>(a,b)</math>-разделяющих внутренних частей. Следовательно, мы получим укладку графа <math>G</math>, что невозможно.
+
Аналогично все остальные <tex>(a,b)</tex>-разделяющие внутренние части можно перебросить во внешнюю область от цикла <tex>C</tex>. После этого точно так же, как в доказательстве утверждения 6, ребро <tex>e = ab</tex> можно уложить внутри цикла <tex>C</tex>, так как не останется <tex>(a,b)</tex>-разделяющих внутренних частей. Следовательно, мы получим укладку графа <tex>G</tex>, что невозможно.
 
}}
 
}}
 +
  
 
==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ====
 
==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ====

Версия 07:22, 20 октября 2010

Теорема:
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных [math] K_{5} [/math], и не содержит подграфов, гомеоморфных [math] K_{3, 3} [/math] .
Доказательство:
[math]\triangleright[/math]

Необходимость

Необходимость условия очевидна.

Достаточность

От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных [math] K_{5} [/math] или [math] K_{3, 3} [/math]. Пусть [math] G [/math] - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.

G связен

Если [math] G [/math] не связен, то его компоненты связности планарны и, следовательно, сам граф [math] G [/math] планарен.

G - обыкновенный граф

В самом деле, пусть в графе [math] G [/math] есть петля или кратное ребро [math] e [/math]. Тогда граф [math] G - e [/math] планарен. Добавляя ребро [math] e [/math] к графу [math] G - e [/math] получим, что граф [math] G [/math] он планарен.

G - блок

Пусть, от противного, в графе есть точка сочленения [math] v [/math]. Через [math] G_1 [/math] обозначим подграф графа [math] G [/math], порождённый вершинами одной из компонент связности графа [math] G - v[/math] и вершинной [math] v [/math], а через [math] G_2 [/math] подграф графа [math] G [/math], порождённый вершинами остальных компонент связности графа [math] G - v [/math] и вершиной [math] v [/math]. (рис. 1)

рис. 1

Возьмём укладку графа [math] G_1 [/math] на плоскости такую, что вершина [math] v [/math] лежит на границе верхней грани. Затем во внешней грани графа [math] G_1 [/math] возьмём укладку графа [math] G_2 [/math] такую, что вершина [math] v [/math] будет представлена на плоскости в двух экземплярах. (рис. 2)

рис. 2

Соединим два экземпляра вершины [math] v [/math] пучком жордановых линий, не допуская лишних пересечений с укладками графов [math] G_1 [/math] и [math] G_2 [/math], состоящим из такого количества линий, какова степень вершины [math] v [/math] в графе [math] G_2 [/math]. Далее отбросим вхождение вершины [math] v [/math] в граф [math] G_2 [/math], заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)

рис. 3

Таким образом мы получили укладку графа [math] G [/math] на плоскости, что невозможно.

Пусть [math] e = ab [/math] - произвольное ребро графа [math] G [/math], [math] G' = G - e [/math].

  1. граф [math] G' [/math] планарен в силу минимальности графа [math] G [/math].
  2. граф [math] G' [/math] связен в силу отсутствия в графе [math] G [/math] мостов.

В G' существует цикл, содержащий вершины a и b

Пусть [math] a [/math] и [math] b [/math] лежат в одном блоке [math] B [/math] графа [math] G' [/math].

  1. Если [math] |VB| \gt = 3 [/math], то существует цикл графа G', содержащий вершины [math] a [/math] и [math] b [/math].
  2. Если [math] |VB| = 2 [/math], то в [math] B [/math] имеется ребро [math] e' = ab [/math], но тогда в [math] G [/math] имеются кратные рёбра [math] e [/math] и [math] e' [/math], что невозможно.
  3. Если вершины [math] a [/math] и [math] b [/math] лежат в разных блоках графа [math] G' [/math], что существует точка сочленения [math] v [/math], принадлежащая любой простой (a, b)-цепи графа [math] G' [/math]. Через [math] G'_1 [/math] обозначим подграф графа [math] G' [/math], порождённый вершиной [math] v [/math] и вершинами компоненты связности графа [math] G' - v [/math], содержащей [math] a [/math], а через [math] G'_2 [/math] - подграф графа [math] G' [/math], порождённый вершиной [math] v [/math] и вершинами остальных компонент связности графа [math] G' - v [/math] (в этом множестве лежит вершина [math] b [/math]). Пусть [math] G''_1 = G'_1 + e_1 [/math], где [math] e1 = vb [/math] - новое ребро (рис. 4)
рис. 4

Заметим, что в графе [math] G''_1 [/math] рёбер меньше, чем в графе [math] G [/math]. Действительно, вместо ребра [math] e [/math] в [math] G''_1 [/math] есть ребро [math] e1 [/math] и часть рёбер из графа [math] G [/math] осталась в графе [math] G''_2 [/math]. Аналогично, в графе [math] G''_2 [/math] рёбер меньше, чем в графе [math] G [/math].
Покажем, далее, что в графе [math] G''_1 [/math] и, аналогично, в графе [math] G''_2 [/math] нет подграфов, гомеоморфных [math] K_5 [/math] или [math] K_{3,3} [/math]. Действительно, если в [math] G''_1 [/math] имеется такой подграф, то в этом подграфе присутствует вновь присоединенное ребро, но это ребро [math] e1 [/math] можно заменить на цепь
a -> b -> ... -> v,
взяв некоторую простую (b, v)-цепь [math] P_2 [/math] в графе [math] G'_2 [/math]. Следовательно, мы получили подграф в [math] G [/math], гомеоморфный [math] К_5 [/math] или [math] К_{3,3} [/math], что невозможно.
Теперь в силу минимальности графа [math] G [/math] графы [math] G''_1 [/math] и [math] G''_2 [/math] планарны. Возьмем укладку графа [math] G''_1 [/math] на плоскости такую, что ребро [math] е1 = av [/math] лежит на границе внешней грани. Во внешней грани графа [math] G''_1 [/math] возьмем укладку графа [math] G''_2 [/math] такую, что ребро [math] е2 = vb [/math] лежит па границе внешпей грани (рис. 5).

рис. 5

Отметим, что опять вершина [math] v [/math] представлена на плоскости в двух экземплярах. Очевидно, добавление ребра [math] е = ab [/math] не меняет планарности графа [math] G''_1 U G''_2[/math]. Склеим оба вхождения вершины [math] v [/math] точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6).

рис. 6

Сотрем затем ранее добавленные ребра [math] е1 [/math] и [math] е2 [/math]. В результате мы получим укладку графа [math] G [/math] на плоскости, что невозможно. Утверждение доказано.


Среди всех укладок графа [math]G'[/math] на плоскости и среди всех циклов [math]C[/math], содержащих [math]a[/math] и [math]b[/math], зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом [math]C[/math], лежит максимальное возможное число граней графа [math]G'[/math]. Зафиксируем один из обходов по циклу [math]C[/math] (на рисунках будем рассматривать обход по часовой стрелке по циклу [math]C[/math]). Для вершин [math]u[/math] и [math]v[/math] цикла [math]C[/math] через [math]C[u,v][/math] будем обозначать простую [math](u,v)[/math]-цепь, идущую по циклу [math]C[/math] от [math]u[/math] до [math]v[/math] в направлении обхода цикла. Конечно, [math]C[u,v] \ne C[v,u][/math]. Положим [math]C(u,v) = C[u,v] \setminus[/math] {[math]u,v[/math]}, т.е. [math]C(u,v)[/math] получено из [math]C[u,v][/math] отбрасыванием вершин [math]u[/math] и [math]v[/math].

Определение:
Внешним графом (относительно цикла [math]C[/math]) будем называть подграф графа [math]G'[/math], порождённый всеми вершинами графа [math]G'[/math], лежащими снаружи от цикла [math]C[/math].


Определение:
Внешними компонентами будем называть компоненты связности внешнего графа.

В силу связности графа [math]G'[/math] для любой внешней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внешними частями будем называть внешние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами, либо рёбра графа [math]G'[/math], лежащие снаружи от цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами


Определение:
Внутренним графом (относительно цикла [math]C[/math]) будем называть подграф графа [math]G'[/math], порождённый всеми вершинами графа [math]G'[/math], лежащими внутри цикла [math]C[/math].


Определение:
Внутренними компонентами будем называть компоненты связности внутреннего графа.

В силу связности графа [math]G'[/math] для любой внутренней компоненты должны существовать рёбра в [math]G'[/math], соединяющие её с вершинами цикла [math]C[/math].

Определение:
Внутренними частями будем называть внутренние компоненты вместе со всеми рёбрами, соединяющими компоненту с вершинами цикла [math]C[/math], и инцидентными им вершинами, либо рёбра графа [math]G'[/math], лежащие внутри цикла [math]C[/math] и соединяющие две вершины из [math]C[/math], вместе с инцидентными такому ребру вершинами

Будем говорить, что внешняя (внутренняя) часть встречает цикл [math]C[/math] в своих точках прикрепления к циклу [math]C[/math].

Теорема:
5) Любая внешняя часть встречает цикл [math]C[/math] точно в двух точках, одна из которых лежит в [math]C(a,b)[/math], а другая - в [math]C(b,a)[/math].
Доказательство:
[math]\triangleright[/math]

Если внешняя часть встречает цикл [math]C[/math] точно в одной точке [math]v[/math], то [math]v[/math] является точкой сочленения графа [math]G[/math], что невозможно. Таким образом, внешняя часть встречает цикл [math]C[/math] не менее чем в двух точках. Если внешняя часть встречает цикл [math]C[/math] в двух точках из [math]C[a,b][/math] (случай [math]C[b,a][/math] рассматривается аналогично), то в [math]G'[/math] имеется цикл, содержащий внутри себя больше граней, чем цикл [math]C[/math], и проходящий через [math]a[/math] и [math]b[/math], что невозможно.

Итого, внешняя часть встречает цикл [math]C[/math] хотя бы в двух точках, никакие две из которых не лежат в [math]C[a,b][/math] и [math]C[b,a][/math]. То есть ровно одна лежит в [math]C[a,b][/math] и ровно одна - в [math]C[b,a][/math].
[math]\triangleleft[/math]
Определение:
Ввиду утверждения 5 будем говорить, что любая внешняя часть является [math](a,b)[/math]-разделяющей частью, поскольку она встречает и [math]C(a,b)[/math], и [math]C(b,a)[/math].

Аналогично можно ввести понятие [math](a,b)[/math]-разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл [math]C[/math], вообще говоря, более чем в двух точках, но не менее чем в двух точках.

Теорема:
6) Существует хотя бы одна [math](a,b)[/math]-разделяющая внутренняя часть.
Доказательство:
[math]\triangleright[/math]
Пусть, от противного, таких частей нет. Тогда, выходя из [math]a[/math] внутри области, ограниченной [math]C[/math], и двигаясь вблизи от [math]C[/math] по направлению обхода [math]C[/math] и вблизи от встречающиъся внутренних частей, можно уложить ребро [math]e = ab[/math] внутри цикла [math]C[/math], т.е. [math]G[/math] - планарный граф, что невозможно.
[math]\triangleleft[/math]
Теорема:
7) Существует внешняя часть, встречающая [math]C(a,b)[/math] в точке [math]c[/math] и [math]C(b,a)[/math] - в точке [math]d[/math], для которой найдётся внутренняя часть, являющаяся одновременно [math](a,b)[/math]-разделяющей и [math](c,d)[/math]-разделяющей.
Доказательство:
[math]\triangleright[/math]

Пусть, от противного, утверждение 7 неверно. Упорядочим [math](a,b)[/math]-разделяющие внутренние части в порядке их прикрепления к циклу [math]C[/math] при движении по циклу от [math]a[/math] до [math]b[/math] и обозначим их соответственно через [math]In_{1},In_{2},...[/math]. Пусть [math]u_{1}[/math] и [math]u_{2}[/math] - первая и последняя вершины из [math]C(a,b)[/math], в которых [math]In_{1}[/math] встречает цикл [math]C[/math], а [math]v_{1}[/math] и [math]v_{2}[/math] - первая и последняя вершины из [math]C(b,a)[/math], в которых [math]In_{1}[/math] встречает цикл [math]C[/math] (возможно, вообще говоря, [math]u_{1} = u_{2}[/math] или [math]v_{1} = v_{2}[/math]). Поскольку 7 неверно, для любой внешней части обе её вершины, в которых она встречает [math]C[/math], лежат либо на [math]C[v_{2},u_{1}][/math], либо на [math]C[u_{2},v_{1}][/math]. Тогда снаружи цикла [math]C[/math] можно провести жорданову кривую [math]P[/math], не пересекая рёбер графа [math]G'[/math], соединяющую [math]v_{2}[/math] с [math]u_{1}[/math]. Поскольку на участках [math]C(u_{1},u_{2})[/math] и [math]C(v_{1},v_{2})[/math] нет точек прикрепления внешних частей, используя жорданову кривую [math]P[/math], внутреннюю часть [math]In_{1}[/math] можно перебросить ("вывернуть" наружу от цикла [math]C[/math]) во внешнюю область цикла [math]C[/math], т.е. уложить её снаружи от цикла [math]C[/math] и сделать её внешней частью.

Аналогично все остальные [math](a,b)[/math]-разделяющие внутренние части можно перебросить во внешнюю область от цикла [math]C[/math]. После этого точно так же, как в доказательстве утверждения 6, ребро [math]e = ab[/math] можно уложить внутри цикла [math]C[/math], так как не останется [math](a,b)[/math]-разделяющих внутренних частей. Следовательно, мы получим укладку графа [math]G[/math], что невозможно.
[math]\triangleleft[/math]


Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2

Рассмотрим 2 случая.

рис. 1

1. Пусть пара вершин [math]\ v_1 [/math] и [math]\ v_2 [/math] является [math](a, b)[/math]-разделяющей.
Тогда, в частности, [math]v_2 \ne a[/math] и [math] v_1 \ne b[/math]. В этом случае граф G содержит подграф, гомеоморфный [math]\ K_{3,3} [/math] (отметим, что в [math] In [/math] существует простая [math](v_1, v_2)[/math]-цепь)(рис. 1).


2. Пусть пара вершин [math]v_1[/math] и [math]v_2[/math] не является [math](a, b)[/math]-разделяющей.
Тогда [math]v_1, v_2[/math] лежат на [math]C[a, b][/math] или на [math]C[b, a][/math]. Без ограничения общности будет считать, что [math]v_1[/math] и [math]v_2[/math] лежат на [math]C[a, b][/math].

2.1. Пусть [math]v_1[/math] и [math]v_2[/math] лежат на [math]C(a, b)[/math], т.е. [math]v_1 \ne b[/math] и [math]v_2 \ne a[/math](рис. 2).

2.1.1 Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 3).

2.1.2. Пусть [math]u_2 = d[/math].
Тогда во внешней части [math]In[/math] имеется вершина [math]w[/math] и три простые цепи от [math]w[/math] соответственно до [math]d, v_1, v_2[/math], которые в качестве общей точки имеют только точку [math]w[/math]. В этом случае в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 4).

2.1.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе G есть подграф, гомеоморфный [math]K{3,3}[/math](рис. 5).

рис. 2 рис. 3 рис. 4 рис. 5


Теперь рассмотрим случаи, когда хотя бы одна из вершин [math]v_1[/math] и [math]v_2[/math] не лежит на [math]С(a, b)[/math]. Без ограничения общности будем считать, что это вершина [math]v_1[/math], т.е [math]v_1 = b[/math](поскольку [math]v_1[/math] лежит на [math]C[a, b][/math]).

2.2. Пусть [math]v_2 \ne a[/math].

2.2.1. Пусть [math]u_2[/math] лежит на [math]C(d, a)[/math].
Тогда в графе G есть пограф, гомеоморфный [math]K_{3,3}[/math](рис. 6).

2.2.2. Пусть [math]u_2 = d[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 7).

2.2.3. Пусть [math]u_2[/math] лежит на [math]C(b, d)[/math].
Тогда в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math](рис. 8).

рис. 6 рис. 7 рис. 8


2.3. Пусть [math]v_2 = a[/math](рис. 9).
Рассмотрим теперь пару вершин [math]u_1[/math] и [math]u_2[/math]. Будем считать, что [math]u_1 = c[/math] и [math]u_2 = d[/math], поскольку все другие случаи расположения вершин [math]u_1[/math] и [math]u_2[/math] так же, как были рассмотрены все случаи расположения [math]v_1[/math] и [math]v_2[/math]. Пусть [math]P_1[/math] и [math]P_2[/math] -- соответственно кратчайшие простые [math](a, b)[/math]-цепь и [math](c, d)[/math]-цепь по внутренней части [math]In[/math](рис. 10). Заметим, что [math]P_1[/math] и [math]P_2[/math] имеют общую точку.

2.3.1. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют более одной общей точки.
Тогда в графе G есть подграф, гомеоморфный [math]K_{3,3}[/math](рис. 11).

2.3.2. Пусть цепи [math]P_1[/math] и [math]P_2[/math] имеют точно одну общую точку [math]w[/math].
Тогда в графе G есть подграф, гомеоморфный [math]K_5[/math](рис. 12).

рис. 9 рис. 10 рис. 11 рис. 12

Таким образом, доказано, что в графе G имеется подграф, гомеоморфный [math]K_{3,3}[/math] или [math]K_5[/math], что противоречит нашему первому предположению.
[math]\triangleleft[/math]

Литература

  • Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы