Редактирование: Теорема Хана-Банаха

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 59: Строка 59:
  
 
<tex>g(y + tz) = g(y) + tg(z) = f(y) + tg(z)</tex>
 
<tex>g(y + tz) = g(y) + tg(z) = f(y) + tg(z)</tex>
 
Идея: мы рассматриваем множество <tex>Y</tex> и пополняем его до линейной оболочки <tex>L = \mathcal{L}(Y,z)</tex>. По линейности, для того, чтобы можно было считать <tex>f</tex> на <tex>L</tex>, нужно доопределить его всего в одной точке. Например, в <tex>z</tex>: <tex>g(z)=-c</tex>.
 
  
 
Пусть <tex>g(z) = -c</tex>, подберем <tex>c</tex> так, чтобы нормы <tex>f</tex> и <tex>g</tex> совпадали. В силу ограниченности <tex>f</tex>, <tex>|f(y)| \le \|f\|\|y\|</tex>, мы хотим найти такое <tex>c</tex>, чтобы выполнялось <tex>|g(y+tz)| \le p(y+tz)</tex>, где <tex>p(x) = \|f\|\|x\|, x \in X</tex>. Заметим, что <tex>p</tex> является полунормой.
 
Пусть <tex>g(z) = -c</tex>, подберем <tex>c</tex> так, чтобы нормы <tex>f</tex> и <tex>g</tex> совпадали. В силу ограниченности <tex>f</tex>, <tex>|f(y)| \le \|f\|\|y\|</tex>, мы хотим найти такое <tex>c</tex>, чтобы выполнялось <tex>|g(y+tz)| \le p(y+tz)</tex>, где <tex>p(x) = \|f\|\|x\|, x \in X</tex>. Заметим, что <tex>p</tex> является полунормой.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)