Изменения

Перейти к: навигация, поиск

Теорема о базах

1185 байт добавлено, 14:41, 15 июня 2015
Лемма о циклах
1) <tex>\exists ! \ C \in A \cup a</tex> — цикл <br>
2) <tex>\forall b \in C, (A \cup a) \setminus b \in I</tex>
|proof=TBD1) Докажем единственность. <br>Так как <tex>A \cup a \notin I</tex>, найдется цикл <tex>C_1 \subseteq A \cup a</tex>. Пусть существует и другой цикл <tex>C_2 \subseteq A \cup a, C_2 \neq C_1</tex>. <br>Тогда, так как <tex>A \in I</tex>, <tex> a \in C_1</tex> и <tex>a \in C_2</tex>. Из [[Теорема о циклах|теоремы о циклах]] заключаем, что в таком случае <tex>\exists C</tex> - цикл, <tex>C \subseteq C_1 \cap C_2 \setminus a</tex>. <br>Но это невозможно, так как <tex>C_1 \cap C_2 \setminus a \subseteq A \in I</tex>, следовательно, предположение неверно, и <tex>C_2 = C_1</tex>. 2) Пусть <tex>\exists b \in C</tex>, такой, что <tex>(A \cup a) \setminus b \notin I</tex>. Значит, <tex>(A \cup a) \setminus b</tex> содержит цикл <tex>C' \neq C</tex>. <br> Но тогда его содержит и <tex>A \cup a</tex>, что противоречит пункту 1 леммы. Следовательно, <tex>\forall b \in C, (A \cup a) \setminus b \in I</tex>
}}
116
правок

Навигация