Теорема о нижней оценке для сортировки сравнениями — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Следствия)
Строка 32: Строка 32:
 
{{Утверждение
 
{{Утверждение
 
|statement=Не существует структуры данных, которая одновременно поддерживает добавление элементов и извлечение минимума за амортизированное время <tex> O(1) </tex>.  
 
|statement=Не существует структуры данных, которая одновременно поддерживает добавление элементов и извлечение минимума за амортизированное время <tex> O(1) </tex>.  
|proof=Пусть имеется структура данных, которая поддерживает добавление элемента за время <tex> O(1) </tex>. При этом значение минимального элемента может измениться, что потребует сортировки элементов для его извлечения. Согласно теореме минимальное время для этого составляет <tex> \Omega (n \log n) </tex>.
+
|proof=Если бы такая структура существовала, то с ещё помощью можно было бы отсортировать все элементы за амортизированное время <tex>O(n)</tex> - добавить все элементы, а затем извлечь минимальный <tex>n</tex> раз.
Обратно, если имеется структура данных, которая поддерживает извлечение минимального элемента за время <tex> O(1) </tex>, требуется по крайней мере <tex> O(\log n) </tex> времени для каждой операции добавления элемента с целью поддержания элементов структуры в отсортированном виде.
 
 
}}
 
}}
  

Версия 02:02, 17 июня 2016

Сортировка сравнениями (англ. Comparison sort) — алгоритм сортировки, который совершает операции сравнения элементов, но никак не использует их внутреннюю структуру.

Теорема (о нижней оценке для сортировки сравнениями):
В худшем случае любой алгоритм сортировки сравнениями выполняет [math]\Omega(n \log n)[/math] сравнений, где [math]n[/math] — число сортируемых элементов.
Доказательство:
[math]\triangleright[/math]
Пример дерева для алгоритма сортировки трех элементов.
Внутренний узел, помеченный как [math] i:j [/math], указывает сравнение между [math] a_{i} [/math] и [math] a_{j} [/math]. Лист, помеченный перестановкой [math] \left \langle \pi(1), \pi(2), \ldots , \pi(n) \right \rangle [/math], указывает упорядочение [math] a_{\pi(1)} \leqslant a_{\pi(2)} \leqslant \ldots \leqslant a_{\pi(n)} [/math].

Любому алгоритму сортировки сравнениями можно сопоставить дерево. В нем узлам соответствуют операции сравнения элементов, ребрам — переходы между состояниями алгоритма, а листьям — конечные перестановки элементов (соответствующие завершению алгоритма сортировки). Необходимо доказать, что высота такого дерева для любого алгоритма сортировки сравнениями не меньше чем [math]\Omega(n \log n)[/math], где [math]n[/math] — количество элементов.

Ограничимся рассмотрением сортировки перестановок [math]n[/math] элементов. При сравнении некоторых двух из них, существует два возможных исхода ([math]a_i \lt a_j[/math] и [math]a_i \gt a_j[/math]), значит, каждый узел дерева имеет не более двух сыновей. Всего существует [math]n![/math] различных перестановок [math]n[/math] элементов, значит, число листьев нашего дерева не менее [math]n![/math] (в противном случае некоторые перестановки были бы не достижимы из корня, а, значит, алгоритм не правильно работал бы на некоторых исходных данных).


Докажем, что двоичное дерево с не менее чем [math]n![/math] листьями имеет глубину [math]\Omega(n \log n)[/math]. Легко показать, что двоичное дерево высоты [math]h[/math] имеет не более чем [math]2^h[/math] листьев. Значит, имеем неравенство [math]n! \leqslant l \leqslant 2^h[/math], где [math]l[/math] — количество листьев. Прологарифмировав его, получим:

[math] h \geqslant \log_2 n! = \log_2 1 + \log_2 2 + \ldots + \log_2 n \gt [/math] [math] \dfrac{n}{2} \log_2 (\dfrac{n}{2}) = \dfrac{n}{2}(\log_2 n - 1) = \Omega (n \log n)[/math]

Итак, для любого алгоритма сортировки сравнениями, существует такая перестановка, на которой он выполнит [math]\Omega(n \log n)[/math] сравнений.
[math]\triangleleft[/math]

Следствия

Утверждение:
Пирамидальная сортировка и сортировка слиянием являются асимптотически оптимальными сортировками сравнением.
[math]\triangleright[/math]
Верхние границы [math] O(n \log n) [/math] времени работы пирамидальной сортировки и сортировки слиянием совпадают с нижней границей [math]\Omega(n \log n)[/math] для наихудшего случая из теоремы о нижней границе для сортировки сравнениями.
[math]\triangleleft[/math]
Утверждение:
Не существует структуры данных, которая одновременно поддерживает добавление элементов и извлечение минимума за амортизированное время [math] O(1) [/math].
[math]\triangleright[/math]
Если бы такая структура существовала, то с ещё помощью можно было бы отсортировать все элементы за амортизированное время [math]O(n)[/math] - добавить все элементы, а затем извлечь минимальный [math]n[/math] раз.
[math]\triangleleft[/math]

Источники информации