Редактирование: Теорема о ёмкостной иерархии

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
== Формулировка ==
 
== Формулировка ==
'''Теорема о емкостной иерархии''' утверждает, что для любых двух [[Конструируемая по памяти функция|конструируемых по памяти функций]] <tex>f</tex> и <tex>g</tex> таких, что <tex> \lim \limits_{n \rightarrow \infty} f(n)/g(n) = 0</tex>, выполняется '''DSPACE'''(''g''(''n'')) &ne; '''DSPACE'''(''f''(''n'')).
+
'''Теорема о емкостной иерархии''' утверждает, что для любых двух [[Конструируемая по памяти функция|конструируемых по памяти функций]] <tex>f</tex> и <tex>g</tex> таких, что <tex> \lim \limits_{n \rightarrow \infty} f(n)/g(n) = 0</tex>, выполняется <tex>DSPACE(g(n)) \ne DSPACE(f(n))</tex>.
  
 
== Доказательство ==
 
== Доказательство ==
 
Зафиксируем функции <tex>f</tex> и <tex>g</tex>.
 
Зафиксируем функции <tex>f</tex> и <tex>g</tex>.
  
Рассмотрим язык <tex>L = \{ \langle m,x \rangle \mid m(\langle m,x \rangle )</tex> не допускает, используя не более <tex> f(|\langle m,x\rangle|)</tex> памяти <tex>\}</tex> и докажем, что <tex>L \notin DSPACE(f)</tex> и <tex>L \in DSPACE(g)</tex>.
+
Рассмотрим язык <tex>L = \{ \langle m,x \rangle \mid m(\langle m,x \rangle )</tex> не допускает, используя не более <tex> f(|\langle m,x\rangle|)</tex> памяти <tex>\}</tex>.
  
 
Допустим, что <tex>L \in DSPACE(f)</tex>, тогда существует детерминированная машина Тьюринга <tex>m_0</tex> такая, что <tex>L(m_0)=L</tex>.
 
Допустим, что <tex>L \in DSPACE(f)</tex>, тогда существует детерминированная машина Тьюринга <tex>m_0</tex> такая, что <tex>L(m_0)=L</tex>.
Строка 17: Строка 17:
 
Следовательно, такой машины не существует. Таким образом, <tex>L \notin DSPACE(f)</tex>.
 
Следовательно, такой машины не существует. Таким образом, <tex>L \notin DSPACE(f)</tex>.
  
<tex>L \in DSPACE(g)</tex>, так как языку <tex>L</tex> можно сопоставить машину Тьюринга <tex>m_0</tex>, распознающую <tex>L</tex> и такую, что на любом входе  <tex>\langle m_1,x\rangle \in L</tex> <tex>m_0</tex> будет работать аналогично <tex>m_1</tex>. Если <tex>m_1</tex> завершила работу, используя не более <tex>f(|\langle m_1,x\rangle|)</tex> памяти, и не допустила, то <tex>m_0</tex> допускает <tex>\langle m_1,x\rangle</tex>. В другом случае не допускает. Любая такая машина использует памяти не более <tex>f(|\langle m_1,x\rangle|)</tex>. По условию теоремы <tex>\lim \limits_{n \rightarrow \infty} f(n)/g(n) = 0</tex>, поэтому начиная с некоторого <tex>n</tex>, <tex>m_1</tex> будет использовать памяти не более <tex>g(|\langle m_1,x\rangle|)</tex>.
+
<tex>L \in DSPACE(g)</tex>, так как языку <tex>L</tex> можно сопоставить машину Тьюринга <tex>m_0</tex>, распознающую <tex>L</tex> и такую, что на любом входе  <tex>\langle m_1,x\rangle \in L</tex> <tex>m_0</tex> будет работать аналогично <tex>m_1</tex>. Если <tex>m_1</tex> завершила работу, используя не более <tex>f(|\langle m_1,x\rangle|)</tex> памяти, и не допустила, то <tex>m_0</tex> допускает <tex>\langle m_1,x\rangle</tex>. В другом случае не допускает. Любая такая машина использует памяти не более <tex>f(|\langle m_1,x\rangle|)</tex>. <tex> \lim \limits_{n \rightarrow \infty} f(n)/g(n) = 0</tex>, поэтому начиная с некоторого <tex>n</tex>, <tex>m_1</tex> будет использовать памяти не более <tex>g(|\langle m_1,x\rangle|)</tex>.
  
Таким образом получили, что <tex>L \in DSPACE(g(n)) \setminus DSPACE(f(n))</tex>. Следовательно, <tex>DSPACE(g(n)) \neq DSPACE(f(n))</tex>, что и требовалось доказать.
+
Получается, что <tex>L \in DSPACE(g(n)) \setminus DSPACE(f(n))</tex> и <tex>L \neq \emptyset</tex>. Следовательно, <tex>DSPACE(g(n)) \neq DSPACE(f(n))</tex>
 +
 
 +
Теорема доказана.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)