Теоремы о простых числах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема о расходимости ряда \sum_{}^{}1/n)
(Теорема о расходимости ряда \sum_{}^{}1/n)
 
Строка 16: Строка 16:
 
Ряд <tex>\sum_{}^{}1/n</tex> расходится.
 
Ряд <tex>\sum_{}^{}1/n</tex> расходится.
 
|proof=
 
|proof=
<tex>\sum_{n=1}^\infty\frac{1}{n^s} = \prod_{p} {(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)}</tex>, где <tex>p</tex> - простое. Таким образом, получаем все числа по одному разу после раскрытия скобок.
+
<tex>\sum_{n=1}^\infty\frac{1}{n} = \prod_{p} {(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)}</tex>, где <tex>p</tex> простое. Таким образом, получаем все числа по одному разу после раскрытия скобок.
 
}}
 
}}
 
Заметим для некоторого <tex>k</tex>: <tex>\sum_{p \le k}^{}{(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)} \ge \sum_{n \le k} \frac{1}{n}</tex>.
 
Заметим для некоторого <tex>k</tex>: <tex>\sum_{p \le k}^{}{(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)} \ge \sum_{n \le k} \frac{1}{n}</tex>.

Текущая версия на 20:52, 28 мая 2011

Теорема о существовании бесконечного числа простых чисел[править]

Теорема:
Простых чисел бесконечно много.
Доказательство:
[math]\triangleright[/math]
Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.
[math]\triangleleft[/math]

Теорема о расходимости ряда [math]\sum_{}^{}1/n[/math][править]

Теорема:
Ряд [math]\sum_{}^{}1/n[/math] расходится.
Доказательство:
[math]\triangleright[/math]
[math]\sum_{n=1}^\infty\frac{1}{n} = \prod_{p} {(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)}[/math], где [math]p[/math] — простое. Таким образом, получаем все числа по одному разу после раскрытия скобок.
[math]\triangleleft[/math]

Заметим для некоторого [math]k[/math]: [math]\sum_{p \le k}^{}{(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)} \ge \sum_{n \le k} \frac{1}{n}[/math]. Теперь, пользуясь выражением [math] \ln(1+x) \approx x + o(x) [/math] и логарифмируя, выводим: [math] \sum_{p} {\ln(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots)} \approx \sum_{p} { (\frac{1}{p} + \frac{1}{p^2} + \cdots)} \le \frac{c}{p^2} [/math] - расходится.

Теорема о расходимости ряда [math]\sum_{}^{}1/p[/math][править]

Теорема:
Ряд [math]\sum_{}^{}1/p[/math], где [math]p[/math] - простое, расходится.
Доказательство:
[math]\triangleright[/math]

Работая в условиях предыдущей теоремы, продолжаем: [math] \ln(1+x) \le x[/math], тогда [math] \sum_{}^{} {\ln(1 + \frac{1}{p} + \cdots)} \le \sum_{}^{} {( \frac{1}{p} + \frac{1}{p^2} + \cdots)}[/math].

Финально: [math] \sum_{}^{} \frac{1}{p} \ge \sum_{}^{} {[\ln(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots) - \frac{c}{p^2}]} [/math] - расходится.
[math]\triangleleft[/math]