Изменения

Перейти к: навигация, поиск
Нет описания правки
== Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных==
Определим частные производные и дифференциалы высших порядков.
 
<tex>\frac \partial{\partial x_j}</tex> — оператор, дифференцирующий функцию по <tex>x_j</tex>. Последовательное применение такого рода оператора даёт нам частные производные высших порядков.
Пусть <tex>z = f(x,y)</tex>. Тогда <tex>\frac \partial{\partial y} \left ( \frac {\partial f}{\partial x} \right )\stackrel{\mathrm{def}}{=}\frac {\partial^2 f}{\partial x \partial y}</tex> — частная производная второго порядка функции <tex>f</tex>. Дифференцирование осуществляется по переменной в знаменателе, слева направо.
 
{{Теорема
|about=О смешанных производных
Пусть в двумерном шаре у функции <tex>z = f(x,y)</tex> существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке <tex>\overline a</tex> этого шара. Тогда в <tex>\overline a</tex>: <tex>\frac {\partial^2 f}{\partial x \partial y} (\overline a)=\frac {\partial^2 f}{\partial y \partial x}(\overline a)</tex>
}}
 
== Вопрос №39. Формула Тейлора для функции многих переменных==
<tex>f(\overline a+t\Delta \overline a)-f(\overline a)=\sum \limits_{k=1}^n \frac {d^{k}f(\overline a)}{k!}+\frac {d^{n+1}f(\overline a+\theta\Delta \overline a)}{(n+1)!}</tex>
 
== Вопрос №40. Безусловный экстремум: необходимое и достаточное условия==
{Определение
|definition=
Пусть задан линейный функционал <tex>y = f(x_1, x_2, \dots, x_n) </tex> на <tex> V(\overline{a}) \subset R^n </tex>.
Если при <tex>\| \Delta \overline{a} \| \le \delta</tex>, <tex>\delta \approx 0 \Rightarrow f(\overline{a} + \Delta \overline{a}) \le f(\overline{a})</tex>, то <tex>a</tex> {{---}} '''точка локального максимума'''. Аналогично определяется точка локального минимума.
}}
 
{{Теорема
|about=
Аналог теоремы Ферма
|statement=
Пусть <tex>f</tex> дифференцируема в точке локального экстремума <tex>a</tex>. Тогда <tex>\forall j = 1..n : \frac{\partial{f}}{\partial{x_j}} \overline{a} = 0</tex>
}}
 
== Вопрос №41. Локальная теорема о неявном отображении==
{{Теорема
|about=
О неявном отображении
|statement=
Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex> и непрерывно обратима в <tex>(x_0,y_0)</tex>. Тогда в некоторой окрестности начальных данных неявное отображение существует.
}}
 
== Вопрос №42. Исследование функции многих переменных на условный экстремум==
<tex>z=f(\overline x, \overline y),~\overline x=(x_1,\dots x_n),~\overline y=(y_1,\dots y_m)</tex>. Пусть заданы «уравнения связи» в количестве m:
 
<tex>\begin{cases} g_1(\overline x,\overline y)=0\\
g_2(\overline x,\overline y)=0\\
\dots\\
g_m(\overline x,\overline y)=0 \end{cases};</tex>
 
<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.
 
== Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование==
<wikitex>
Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $.
 
До конца параграфа $ f $ непрерывна как функция двух переменных.
 
$ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра.
 
# $ F(y) $ - непрерывна на $ [c; d] $.
# Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница.
# $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным.
 
</wikitex>
168
правок

Навигация