Редактирование: Теория Рамсея

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 39: Строка 39:
 
|proof=
 
|proof=
 
Так как <tex>r(2,2)=2</tex>, достаточно рассмотреть случай <tex>k \geqslant 3</tex>.
 
Так как <tex>r(2,2)=2</tex>, достаточно рассмотреть случай <tex>k \geqslant 3</tex>.
Пусть <tex>g(n, k)</tex> доля среди помеченных графов на <tex>n</tex> вершинах тех, что содержат клику на <tex>k</tex> вершинах. Всего графов на наших вершинах, очевидно <tex>2^{C^2_n}</tex> (каждое из возможных рёбер <tex>C^2_n</tex> можно провести или не провести).
+
Зафиксируем множество различных помеченных вершин <tex>v_1,\ldots,v_n</tex>. Пусть <tex>g(n,k)</tex> {{---}} доля среди всех графов на вершинах <tex>v_1,\ldots,v_n</tex> тех графов, что содержат клику на <tex>k</tex> вершинах. Всего графов на наших вершинах, очевидно <tex>2^{C^2_n}</tex> (каждое из возможных рёбер <tex>C^2_n</tex> можно провести или не провести).
  
 
Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно,
 
Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно,

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)