Изменения

Перейти к: навигация, поиск

Теория Рамсея

583 байта добавлено, 09:57, 24 июня 2019
Источники информации
{{Определение
|id=def1
|definition='''Клика''' (англ. ''clique'') в [[Основные определения теории графов#Неориентированные графы|неориентированном графе ]] <tex>G(V, E)</tex> {{---}} подмножество [[Основные определения теории графов#Неориентированные графы|вершин ]] <tex>C \subseteq V</tex>, такое что для любых двух различных вершин в <tex>C</tex> существует [[Основные определения теории графов#def_edge_und|ребро]], их соединяющее. Другими словами, клика графа <tex>G(V, E)</tex> {{---}} [[Основные определения теории графов#defFullGraph|полный ]] подграф графа <tex>G(V, E)</tex>. }}
{{Определение
|id=def2
|proof=
<tex>1)</tex> # Докажем с помощью метода математической индукции по <tex>n+m</tex>. <br>'''База:''' <tex>r(n,\;1) = r(1,\;n) = 1</tex>, так как граф, состоящий из одной вершины, можно считать полным графом любого цвета. <br>'''Индукционный переход:''' Пусть <tex>n>1</tex> и <tex>m>1</tex>. Рассмотрим полный чёрно-белый граф из <tex>r(n-1,\;m)+r(n,\;m-1)</tex> вершин. Возьмём произвольную вершину <tex>v</tex> и обозначим через <tex>M</tex> и <tex>N</tex> множества вершин, инцидентных <tex>v</tex> в чёрном и белом подграфе соответственно. Так как в графе <tex>r(n-1,\;m)+r(n,\;m-1)=|M|+|N|+1 </tex> вершин, согласно принципу Дирихле, либо <tex>|M|\geqslant r(n-1,\;m)</tex>, либо <tex>|N|\geqslant r(n,\;m-1)</tex>. Пусть <tex>|M|\geqslant r(n-1,\;m)</tex>. Тогда либо в <tex>M</tex> существует белый <tex>K_m</tex>, что доказывает теорему, либо в <tex>M</tex> есть чёрный <tex>K_{n-1}</tex>, который вместе с <tex>v</tex> образует чёрный <tex>K_n</tex>, в этом случае теорема также доказана. Случай <tex>|N|\geqslant r(n,\;m-1)</tex> рассматривается аналогично. <tex>2)</tex> # Предположим, <tex>p=r(n-1,\;m)</tex> и <tex>q=r(n,\;m-1)</tex> оба чётны. Положим <tex>s=p+q-1</tex> и рассмотрим чёрно-белый граф из <tex>s</tex> вершин. Если <tex>d_i</tex> степень <tex>i</tex>-й вершины в чёрном подграфе, то, согласно [[Лемма о рукопожатиях|лемме о рукопожатиях]], <tex> \sum\limits_{i=1}^s d_i</tex> — чётно. Поскольку <tex>s</tex> нечётно, должно существовать чётное <tex>d_i</tex>. Не умаляя общности, положим, что <tex>d_1</tex> чётно. Обозначим через <tex>M</tex> и <tex>N</tex> вершины, инцидентные вершине <tex>1</tex> в чёрном и белом подграфах соответственно. Тогда <tex>|M|=d_1</tex> и <tex>|N|=s-1-d_1</tex> оба чётны. Согласно принципу Дирихле, либо <tex>|M|\geqslant p-1</tex>, либо <tex>|N|\geqslant q</tex>. Так как <tex>|M|</tex> чётно, а <tex>p-1</tex> нечётно, первое неравенство можно усилить, так что либо <tex>|M|\geqslant p</tex>, либо <tex>|N|\geqslant q</tex>. <br> Далее проводим рассуждения, аналогичные тем, что присутствуют в первом пункте теоремы. Таким образом, <tex>r(n,m) \leqslant r(n,m-1)+r(n-1,m) - 1</tex>.
}}
{{Утверждение|id=u1|about=1|statement=Для натуральных чисел <tex>m,n</tex> выполняется равенство <tex>r(n,m) \leqslant C_{n+m-2}^{n-1}</tex>
===Оценки снизу===
{{Теорема|id=ter2|about=2, Теорема Эрдеша
|statement=Для любого натурального числа <tex>k \geqslant 2</tex> выполняется неравенство <tex>r(k,k) \geqslant 2^{k/2}</tex>
|proof=
Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно,
<tex>g(n,k) \leqslant \dfrac{C^k_n\cdot 2^{C^2_n-C^2_k}}{2^{C^2_n}}=\dfrac{n!}{(n-k)!\cdot k! \cdot 2^{C^2_k}}=\dfrac{(n-k+1)\cdot(n-k+2)\cdot\ldots \cdot(n-1)\cdot n}{ k! \cdot 2^{C^2_k}}<\dfrac{n^k}{k!\cdot 2^{C^2_k}}</tex> <tex>(*)</tex>
Подставив <tex>n<2^{k/2}</tex> в неравенство <tex>(*)</tex> мы получаем
}}
Заметим, что числа Рамсея размерности <tex>2</tex> — это определённые ранее числа Рамсея для клик.
 
 
{{Определение
|id=def7|definition=
Для каждого множества <tex>M</tex> через <tex>M^k</tex> мы будем обозначать множество всех <tex>k</tex>-элементных подмножеств <tex>M</tex>.
}}
{{Теорема
|statement=Пусть <tex>m,k,n_1,\ldots,n_k</tex> {{---}} натуральные числа, причем <tex>k \geqslant 2</tex>, а <tex>n_1,\ldots ,n_k \geqslant m</tex>. Тогда существует число Рамсея <tex>r_m(n_1,\ldots n_k)</tex>.
|proof=
<tex>1)</tex> # Мы будем доказывать теорему по индукции. Начнем со случая <tex>k=2</tex>. Приступая к доказательству для числа <tex>r_m(n_1,n_2)</tex> мы будем считать доказанным утверждение теоремы для чисел Рамсея всех меньших размерностей и чисел Рамсея размерности <tex>m</tex> с меньшей суммой <tex>n_1+n_2</tex>. В качестве базы будем использовать случай чисел Рамсея размерности <tex>2</tex> разобранный выше. Итак, мы докажем, что <tex>r_m(n_1,n_2)-1 \leqslant p=r_{m-1}(r_m(n_1-1,n_2),r_m(n_1,n_2-1))</tex>. <br> Для каждого множества <tex>M</tex> через <tex>M^k</tex> обозначим множество всех <tex>k</tex>-элементных подмножеств <tex>M</tex>. <br> Рассмотрим <tex>(p+1)</tex>-элементное множество <tex>M</tex> и выделим в нём элемент <tex>a</tex>. Пусть <tex>M_0=M \setminus \{ a \}</tex>. Пусть <tex>\rho:M^m\rightarrow \{1, 2 \} </tex> — произвольная раскраска в два цвета. Рассмотрим раскраску <tex>\rho': M_0^{m-1} \rightarrow \{1, 2\} </tex> , определённую следующим образом: для каждого множества <tex>B \in M_0^{m-1}</tex> пусть <tex>\rho'(B) = \rho(B \cup \{ a \})</tex>.<br> Так как <tex>|M_0|=p</tex>, либо существует <tex>r_m(n_1 — 1,n_2)</tex>-элементное подмножество <tex>M_i \subset M_0</tex>, <tex>\rho'(B)=1</tex> на всех <tex>B \in M_1^{m-1}</tex>, либо существует <tex>r_m(n_1,n_2-1)</tex>-элементное подмножество <tex>M_2 \subset M_0</tex>, <tex>\rho'(B)=2</tex> на всех <tex>B \in M_2^{m-1}</tex>. Случаи аналогичны, рассмотрим первый случай и множество <tex>M_1</tex>.<br> По индукционному предположен из <tex>|M_1|=r_m(n_1-1,n_2)</tex> следует, что либо существует <tex>n_1-1</tex>-элементное подмножество <tex>N_1 \subset M_1</tex>, <tex>\rho(A)=1</tex> на всех <tex>A \in N^m_1</tex>, либо существует <tex>n_2</tex>-элементное подмножество <tex>N_2 \subset M_1</tex>, <tex>\rho(A)=2</tex> на всех <tex>A \in N_2^m</tex>. Во втором случае искомое подмножество найдено (это <tex>N_2</tex>), рассмотрим первый случай и множество <tex>N=N_1 \cup \{a\}</tex>. Пусть <tex>A \in N^m</tex>. Если <tex>A \not\ni a</tex>, то <tex>A \in N_1^m</tex> и следовательно <tex>\rho(A)=1</tex>. Если же <tex>A \ni a</tex>, то множество <tex>A \setminus \{a\} \in N_1^{m-1} \subset M_1^{m-1}</tex> и поэтому <tex>\rho(A)=\rho'(A \setminus \{a \})=1</tex>. Учитывая, что <tex>|N|=n_1</tex>, мы нашли искомое подмножество и в этом случае. <tex>2)</tex> # При <tex>k>2</tex> будем вести индукцию по <tex>k</tex> с доказанной выше базой <tex>k=2</tex>. При <tex>k>2</tex> мы докажем неравенство.<tex>r_m(n_1,\ldots ,n_k) \leqslant q=r_m(r_m(n_1,\ldots ,n_{k-1}),n_k)</tex> . <br> Для этого мы рассмотрим множество <tex>M</tex> на <tex>q</tex> вершинах и произвольную раскраску <tex>\rho:M^m \rightarrow [1 \ldots k]</tex> в <tex>k</tex>цветов. Рассмотрим раскраску <tex>\rho':M^m \rightarrow \{0,k\}</tex>, в которой цвета <tex>1,\ldots,k-1</tex> раскраски <tex>\rho</tex> склеены в цвет <tex>0</tex>. Тогда существует либо такое подмножество <tex>M_0 \subset M</tex>, что <tex>|M_0|=r_m(n_1,\ldots ,n_{k-1})</tex> и <tex>\rho'(A)=0</tex> на всех <tex>A \in M_0^m</tex>, либо существует такое <tex>n_k</tex>-элементное подмножество <tex>M_k \subset M</tex>, что <tex>\rho(A)=\rho'(A)=k</tex> на всех <tex>A \in M^m_k</tex>. Во втором случае <tex>M_k</tex> — искомое подмножество, а в первом случае заметим, что на любом подмножестве <tex>A \in M_0^m</tex> из <tex>\rho'(A)=0</tex> следует <tex>\rho(A) \in [1 \ldots k-1]</tex>. Исходя из размера множества <tex>M_0</tex> по индукционному предположению получаем, что найдется искомое подмножество множества <tex>M</tex> для одного из цветов <tex>1,\ldots ,k-1</tex>, таким образом неравенство доказано, а из этого следует и существование числа Рамсея <tex>r_m(n_1,\ldots ,n_k)</tex>.
}}
|id=def8
|definition=
Пусть <tex>H_1,H_2</tex> — графы. '''Число Рамсея''' <tex>r(H_1,H_2)</tex> — это наименьшее из всех таких чисел <tex>x \in \mathbb N</tex>, что при любой раскраске рёбер полного графа на <tex>x</tex> вершинах в два цвета обязательно найдется подграф, [[Основные определения теории графов#isomorphic_graphs|изоморфный ]] <tex>H_1</tex> с рёбрами цвета <tex>1</tex> или подграф изоморфный <tex>H_2</tex> с рёбрами цвета <tex>2</tex>.
}}
Существует и другое определение чисел Рамсея для произвольных графов.
{{Лемма
|id=l1|about=1|statement=Пусть <tex>m>1</tex>, а граф <tex>H</tex> таков, что <tex>v(H) \geqslant (m-1)(n-1)+1</tex> и <tex>\alpha(H) \leqslant m-1</tex>, где <tex>v(H)</tex> {{---}} количество вершин в графе <tex>H</tex>. Тогда граф <tex>H</tex> содержит в качестве подграфа любое [[Основные определения теории графов#defTree|дерево ]] на <tex>n</tex> вершинах.
|proof=
Зафиксируем <tex>m</tex> и проведем индукцию по <tex>n</tex>.
{{Теорема
|id=ter5
|author=5, Теорема Хватала
|statement=<tex>r(T_n,K_m)=(m-1)(n-1)+1</tex>, где <tex>T_n</tex> — дерево на <tex>n</tex> вершинах.
|proof=
<tex>1)</tex> ДокажемСперва докажем, что <tex>r(T_n,K_m) \geqslant (m-1)(n-1)+1</tex>. Для этого предъявим раскраску рёбер графа <tex>K_{(m-1)(n-1)}</tex>, в которой нет ни одного связного подграфа на <tex>n</tex> вершинах с рёбрами цвета <tex>1</tex> и нет клики на <tex>m</tex> вершинах с рёбрами цвета <tex>2</tex>. Разобьём вершины графа на <tex>m-1</tex> клику по <tex>n-1</tex> вершине и покрасим все рёбра этих клик в цвет <tex>1</tex>. Тогда любой связный подграф с рёбрами цвета <tex>1</tex> содержит не более <tex>n-1</tex> вершины, в частности, нет подграфа с рёбрами цвета <tex>1</tex>, изоморфного <tex>T_n</tex>. Рёбра цвета <tex>2</tex> (то есть, все оставшиеся рёбра) образуют <tex>(m-1)</tex>-дольный граф, в котором, очевидно, нет клики на <tex>m</tex> вершинах. <tex>2)</tex> Воспользуемся Теперь воспользуемся вторым [[#def16|определением]] числа Рамсея <tex>r(H_1, H_2)</tex>. Рассмотрим произвольный граф <tex>G</tex> на <tex>{(m-1)(n-1)+1}</tex> вершинах. Предположим, что в графе <tex>G</tex> не существует клики на <tex>m</tex> вершинах. Тогда <tex>m>1</tex> и <tex>\alpha( \overline G) \leqslant m-1</tex>. По [[#l1|лемме <tex>1</tex>]], граф <tex> \overline G</tex> содержит в качестве подграфа любое дерево на <tex>n</tex> вершинах, в частности, дерево, изоморфное <tex>T_n</tex>.
}}
* [[wikipedia:Ramsey's theorem|Wikipedia — Ramsey's theorem]]
* [[wikipedia:Ramsey theory|Wikipedia — Ramsey theory]]
* [http://people.maths.ox.ac.uk/~gouldm/ramsey.pdf Ramsey Theory]
*[https://vtechworks.lib.vt.edu/bitstream/handle/10919/32873/Dickson_JO_T_2011.pdf?sequence=1&isAllowed=y An Introduction to Ramsey Theory on Graphs]
* [http://people.maths.ox.ac.uk/~gouldm/ramsey.pdf Ramsey Theory]
*[http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1| Small Ramsey Numbers by Stanisław Radziszowski]
[[Категория:Дискретная математика и алгоритмы]]
442
правки

Навигация