Теория Рамсея — различия между версиями
Ponomarev (обсуждение | вклад) (→Числа Рамсея) |
Ponomarev (обсуждение | вклад) (→Источники информации) |
||
(не показаны 43 промежуточные версии 6 участников) | |||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|id=def1 | |id=def1 | ||
− | |definition='''Клика''' (англ. ''clique'') в неориентированном графе <tex>G(V, E)</tex> {{---}} подмножество вершин <tex>C \subseteq V</tex>, такое что для любых двух различных вершин в <tex>C</tex> существует ребро, их соединяющее. Другими словами, клика графа <tex>G(V, E)</tex> {{---}} полный подграф графа <tex>G(V, E)</tex>. }} | + | |definition='''Клика''' (англ. ''clique'') в [[Основные определения теории графов#Неориентированные графы|неориентированном графе]] <tex>G(V, E)</tex> {{---}} подмножество [[Основные определения теории графов#Неориентированные графы|вершин]] <tex>C \subseteq V</tex>, такое что для любых двух различных вершин в <tex>C</tex> существует [[Основные определения теории графов#def_edge_und|ребро]], их соединяющее. Другими словами, клика графа <tex>G(V, E)</tex> {{---}} [[Основные определения теории графов#defFullGraph|полный]] подграф графа <tex>G(V, E)</tex>. }} |
{{Определение | {{Определение | ||
|id=def2 | |id=def2 | ||
Строка 13: | Строка 13: | ||
}} | }} | ||
[[Файл:RamseyTheoryK5.png|200px|thumb|upright|Раскраска <tex>K_5</tex> без одноцветных треугольников]] | [[Файл:RamseyTheoryK5.png|200px|thumb|upright|Раскраска <tex>K_5</tex> без одноцветных треугольников]] | ||
− | Несложно доказать, что данные определения эквивалентны. | + | Несложно доказать, что данные определения эквивалентны. Достаточно показать, что раскрашенному в два цвета графу <tex>K_n</tex>, можно однозначно поставить в соответствие граф <tex>G</tex> на <tex>n</tex> вершинах. Довольно часто определение для чисел Рамсея дается через задачу "о друзьях и незнакомцах"<ref>[https://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers| Theorem on friends and strangers]</ref>. Пусть на вечеринке каждые два человека могут быть либо друзьями, либо незнакомцами, в общем виде задачи требуется найти, какое минимальное количество людей нужно взять, чтобы хотя бы <tex>n</tex> человек были попарно знакомы, или хотя бы <tex>m</tex> человек были попарно незнакомы. Если мы переформулируем данную задачу в терминах графов, то как раз получим определение числа Рамсея <tex>r(n, m)</tex>, представленное ранее. |
===Пример=== | ===Пример=== | ||
Чтобы получить лучшее представление природы чисел Рамсея, приведем пример. Докажем, что <tex>r(3,3) = 6</tex>. Представим, что ребра <tex>K_6</tex> раскрашены в два цвета: красный и синий. Возьмем вершину <tex>v</tex>. Данной вершине, как и всем другим, инцидентны <tex>5</tex> рёбер, тогда, согласно принципу Дирихле, хотя бы три из них одного цвета. Для определенности положим, что хотя бы <tex>3</tex> ребра, соединяющие вершину <tex>v</tex> с вершинами <tex>r</tex>, <tex>s</tex>, <tex>t</tex>, синие. Если хотя бы одно из ребер <tex>rs</tex>, <tex>rt</tex>, <tex>st</tex> синее, то в графе есть синий треугольник (полный граф на трёх вершинах), иначе, если они все красные, есть красный треугольник. Таким образом, <tex>r(3,3) \leqslant 6 </tex>. | Чтобы получить лучшее представление природы чисел Рамсея, приведем пример. Докажем, что <tex>r(3,3) = 6</tex>. Представим, что ребра <tex>K_6</tex> раскрашены в два цвета: красный и синий. Возьмем вершину <tex>v</tex>. Данной вершине, как и всем другим, инцидентны <tex>5</tex> рёбер, тогда, согласно принципу Дирихле, хотя бы три из них одного цвета. Для определенности положим, что хотя бы <tex>3</tex> ребра, соединяющие вершину <tex>v</tex> с вершинами <tex>r</tex>, <tex>s</tex>, <tex>t</tex>, синие. Если хотя бы одно из ребер <tex>rs</tex>, <tex>rt</tex>, <tex>st</tex> синее, то в графе есть синий треугольник (полный граф на трёх вершинах), иначе, если они все красные, есть красный треугольник. Таким образом, <tex>r(3,3) \leqslant 6 </tex>. | ||
− | Чтобы доказать, что <tex>r(3,3) = 6 </tex>, предъявим такую раскраску графа <tex>K_5</tex>, где нет клики на трех вершинах ни синего, ни красного цвета. Такая раскраска представлена на рисунке справа. | + | Чтобы доказать, что <tex>r(3,3) = 6 </tex>, предъявим такую раскраску графа <tex>K_5</tex>, где нет клики на трех вершинах ни синего, ни красного цвета. Такая раскраска представлена на рисунке справа. Понятно, что предъявлять отдельные раскраски для <tex> K_4</tex>, <tex>K_3</tex> не нужно, так как достаточно взять соответствующие подграфы раскрашенного <tex>K_5</tex>. |
− | |||
===Теорема Рамсея. Оценки сверху=== | ===Теорема Рамсея. Оценки сверху=== | ||
Строка 25: | Строка 24: | ||
|proof= | |proof= | ||
− | + | # Докажем с помощью метода математической индукции по <tex>n+m</tex>. <br>'''База:''' <tex>r(n,\;1) = r(1,\;n) = 1</tex>, так как граф, состоящий из одной вершины, можно считать полным графом любого цвета. <br>'''Индукционный переход:''' Пусть <tex>n>1</tex> и <tex>m>1</tex>. Рассмотрим полный чёрно-белый граф из <tex>r(n-1,\;m)+r(n,\;m-1)</tex> вершин. Возьмём произвольную вершину <tex>v</tex> и обозначим через <tex>M</tex> и <tex>N</tex> множества вершин, инцидентных <tex>v</tex> в чёрном и белом подграфе соответственно. Так как в графе <tex>r(n-1,\;m)+r(n,\;m-1)=|M|+|N|+1 </tex> вершин, согласно принципу Дирихле, либо <tex>|M|\geqslant r(n-1,\;m)</tex>, либо <tex>|N|\geqslant r(n,\;m-1)</tex>. Пусть <tex>|M|\geqslant r(n-1,\;m)</tex>. Тогда либо в <tex>M</tex> существует белый <tex>K_m</tex>, что доказывает теорему, либо в <tex>M</tex> есть чёрный <tex>K_{n-1}</tex>, который вместе с <tex>v</tex> образует чёрный <tex>K_n</tex>, в этом случае теорема также доказана. Случай <tex>|N|\geqslant r(n,\;m-1)</tex> рассматривается аналогично. | |
− | + | # Предположим, <tex>p=r(n-1,\;m)</tex> и <tex>q=r(n,\;m-1)</tex> оба чётны. Положим <tex>s=p+q-1</tex> и рассмотрим чёрно-белый граф из <tex>s</tex> вершин. Если <tex>d_i</tex> степень <tex>i</tex>-й вершины в чёрном подграфе, то, согласно [[Лемма о рукопожатиях|лемме о рукопожатиях]], <tex> \sum\limits_{i=1}^s d_i</tex> — чётно. Поскольку <tex>s</tex> нечётно, должно существовать чётное <tex>d_i</tex>. Не умаляя общности, положим, что <tex>d_1</tex> чётно. Обозначим через <tex>M</tex> и <tex>N</tex> вершины, инцидентные вершине <tex>1</tex> в чёрном и белом подграфах соответственно. Тогда <tex>|M|=d_1</tex> и <tex>|N|=s-1-d_1</tex> оба чётны. Согласно принципу Дирихле, либо <tex>|M|\geqslant p-1</tex>, либо <tex>|N|\geqslant q</tex>. Так как <tex>|M|</tex> чётно, а <tex>p-1</tex> нечётно, первое неравенство можно усилить, так что либо <tex>|M|\geqslant p</tex>, либо <tex>|N|\geqslant q</tex>. <br> Далее проводим рассуждения, аналогичные тем, что присутствуют в первом пункте теоремы. Таким образом, <tex>r(n,m) \leqslant r(n,m-1)+r(n-1,m) - 1</tex>. | |
− | '''База:''' <tex>r(n,\;1) = r(1,\;n) = 1</tex>, так как граф, состоящий из одной вершины, можно считать полным графом любого цвета. | ||
− | |||
− | '''Индукционный переход:''' Пусть <tex>n>1</tex> и <tex>m>1</tex>. Рассмотрим полный чёрно-белый граф из <tex>r(n-1,\;m)+r(n,\;m-1)</tex> вершин. Возьмём произвольную вершину <tex>v</tex> и обозначим через <tex>M</tex> и <tex>N</tex> множества, | ||
− | |||
− | |||
− | |||
− | Далее проводим рассуждения, аналогичные тем, что присутствуют в первом пункте теоремы. Таким образом, <tex>r(n,m) \leqslant r(n,m-1)+r(n-1,m) - 1</tex>. | ||
}} | }} | ||
{{Утверждение|id=u1|about=1|statement=Для натуральных чисел <tex>m,n</tex> выполняется равенство <tex>r(n,m) \leqslant C_{n+m-2}^{n-1}</tex> | {{Утверждение|id=u1|about=1|statement=Для натуральных чисел <tex>m,n</tex> выполняется равенство <tex>r(n,m) \leqslant C_{n+m-2}^{n-1}</tex> | ||
Строка 43: | Строка 35: | ||
===Оценки снизу=== | ===Оценки снизу=== | ||
− | {{Теорема|id=ter2|about=2, Эрдеша | + | {{Теорема|id=ter2|about=2, Теорема Эрдеша |
|statement=Для любого натурального числа <tex>k \geqslant 2</tex> выполняется неравенство <tex>r(k,k) \geqslant 2^{k/2}</tex> | |statement=Для любого натурального числа <tex>k \geqslant 2</tex> выполняется неравенство <tex>r(k,k) \geqslant 2^{k/2}</tex> | ||
|proof= | |proof= | ||
Строка 51: | Строка 43: | ||
Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно, | Посчитаем графы с кликой на <tex>k</tex> вершинах следующим образом: существует <tex>C^k_n</tex> способов выбрать <tex>k</tex> вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на <tex>k</tex> вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем <tex>C^k_n\cdot 2^{C^2_n-C^2_k}</tex>. Следовательно, | ||
− | <tex>g(n,k) \leqslant \dfrac{C^k_n\cdot 2^{C^2_n-C^2_k}}{2^{C^2_k}}<\dfrac{n^k}{k!\cdot 2^{C^2_k}}</tex> <tex>(*)</tex> | + | <tex>g(n,k) \leqslant \dfrac{C^k_n\cdot 2^{C^2_n-C^2_k}}{2^{C^2_n}}=\dfrac{n!}{(n-k)!\cdot k! \cdot 2^{C^2_k}}=\dfrac{(n-k+1)\cdot(n-k+2)\cdot\ldots \cdot(n-1)\cdot n}{ k! \cdot 2^{C^2_k}}<\dfrac{n^k}{k!\cdot 2^{C^2_k}}</tex> <tex>(*)</tex> |
Подставив <tex>n<2^{k/2}</tex> в неравенство <tex>(*)</tex> мы получаем | Подставив <tex>n<2^{k/2}</tex> в неравенство <tex>(*)</tex> мы получаем | ||
Строка 67: | Строка 59: | ||
===Значения чисел Рамсея=== | ===Значения чисел Рамсея=== | ||
− | Задача нахождения точных значений чисел Рамсея чрезвычайно трудна, их известно довольно мало. Далее приведена таблица Станислава Радзишевского | + | Задача нахождения точных значений чисел Рамсея чрезвычайно трудна, их известно довольно мало. Далее приведена таблица Станислава Радзишевского, в которой присутствуют практически все известные числа Рамсея или же промежутки, в которых они находятся. |
<center> | <center> | ||
{| class="wikitable" align="center" style="color: blue; background-color:#ffffcc;" cellpadding="10" | {| class="wikitable" align="center" style="color: blue; background-color:#ffffcc;" cellpadding="10" | ||
Строка 217: | Строка 209: | ||
{{Теорема | {{Теорема | ||
|id=ter3|about=3,Теорема Рамсея для нескольких цветов | |id=ter3|about=3,Теорема Рамсея для нескольких цветов | ||
− | |statement=<tex>\forall k, n_1, \ldots n_k \in \mathbb N </tex> существует | + | |statement=<tex>\forall k, n_1, \ldots n_k \in \mathbb N </tex> существует число Рамсея <tex>r(n_1,\ldots,n_k)</tex>, при этом <tex>r(n_1,\ldots,n_k)\leqslant r(n_1,\ldots, n_{k-2}, r(n_{k-1},\;n_k)).</tex> |
|proof= | |proof= | ||
− | Возьмем граф из <tex>r(n_1,\ldots, n_{k-2}, r(n_{k-1}, n_k))</tex> вершин и окрасим его рёбра в <tex>k</tex> цветов. Пока что будем считать цвета <tex>k-1</tex> и <tex>k</tex> одним цветом. Тогда граф будет <tex>(k-1)</tex>-цветным. Согласно определению числа Рамсея <tex>r(n_1,\ldots,n_{k-2},r(n_{k-1},n_k))</tex>, такой граф либо содержит <tex>K_{n_i}</tex> для некоторого цвета <tex>i</tex>, такого что <tex>1\leqslant i\leqslant k-2</tex>, либо <tex>K_{r( | + | Возьмем граф из <tex>r(n_1,\ldots, n_{k-2}, r(n_{k-1}, n_k))</tex> вершин и окрасим его рёбра в <tex>k</tex> цветов. Пока что будем считать цвета <tex>k-1</tex> и <tex>k</tex> одним цветом. Тогда граф будет <tex>(k-1)</tex>-цветным. Согласно определению числа Рамсея <tex>r(n_1,\ldots,n_{k-2},r(n_{k-1},n_k))</tex>, такой граф либо содержит <tex>K_{n_i}</tex> для некоторого цвета <tex>i</tex>, такого что <tex>1\leqslant i\leqslant k-2</tex>, либо <tex>K_{r(n_{k-1},n_k)}</tex>, окрашенный общим цветом <tex>k-1</tex> и <tex>k</tex>. В первом случае доказательство завершено. Во втором случае вернём прежние цвета и заметим, что, по определению числа Рамсея, полный <tex>r(n_{k-1},n_k)</tex> — вершинный граф содержит либо <tex>K_{n_{k-1}}</tex> цвета <tex>k-1</tex>, либо <tex>K_{n_k}</tex> цвета <tex>k</tex>. Таким образом любое число Рамсея для раскраски в <tex>k</tex> цветов ограничено некоторым числом Рамсея для меньшего количества цветов, следовательно, <tex>r(n_1,\ldots,n_k)</tex> существует для любых <tex> k, n_1, \ldots n_k, \in \mathbb N </tex>, и теорема доказана. |
}} | }} | ||
Строка 229: | Строка 221: | ||
}} | }} | ||
Заметим, что числа Рамсея размерности <tex>2</tex> — это определённые ранее числа Рамсея для клик. | Заметим, что числа Рамсея размерности <tex>2</tex> — это определённые ранее числа Рамсея для клик. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Теорема | {{Теорема | ||
Строка 240: | Строка 226: | ||
|statement=Пусть <tex>m,k,n_1,\ldots,n_k</tex> {{---}} натуральные числа, причем <tex>k \geqslant 2</tex>, а <tex>n_1,\ldots ,n_k \geqslant m</tex>. Тогда существует число Рамсея <tex>r_m(n_1,\ldots n_k)</tex>. | |statement=Пусть <tex>m,k,n_1,\ldots,n_k</tex> {{---}} натуральные числа, причем <tex>k \geqslant 2</tex>, а <tex>n_1,\ldots ,n_k \geqslant m</tex>. Тогда существует число Рамсея <tex>r_m(n_1,\ldots n_k)</tex>. | ||
|proof= | |proof= | ||
− | + | # Мы будем доказывать теорему по индукции. Начнем со случая <tex>k=2</tex>. Приступая к доказательству для числа <tex>r_m(n_1,n_2)</tex> мы будем считать доказанным утверждение теоремы для чисел Рамсея всех меньших размерностей и чисел Рамсея размерности <tex>m</tex> с меньшей суммой <tex>n_1+n_2</tex>. В качестве базы будем использовать случай чисел Рамсея размерности <tex>2</tex> разобранный выше. Итак, мы докажем, что <tex>r_m(n_1,n_2)-1 \leqslant p=r_{m-1}(r_m(n_1-1,n_2),r_m(n_1,n_2-1))</tex>. <br> Для каждого множества <tex>M</tex> через <tex>M^k</tex> обозначим множество всех <tex>k</tex>-элементных подмножеств <tex>M</tex>. <br> Рассмотрим <tex>(p+1)</tex>-элементное множество <tex>M</tex> и выделим в нём элемент <tex>a</tex>. Пусть <tex>M_0=M \setminus \{ a \}</tex>. Пусть <tex>\rho:M^m\rightarrow \{1, 2 \} </tex> — произвольная раскраска в два цвета. Рассмотрим раскраску <tex>\rho': M_0^{m-1} \rightarrow \{1, 2\} </tex> , определённую следующим образом: для каждого множества <tex>B \in M_0^{m-1}</tex> пусть <tex>\rho'(B) = \rho(B \cup \{ a \})</tex>. <br> Так как <tex>|M_0|=p</tex>, либо существует <tex>r_m(n_1 — 1,n_2)</tex>-элементное подмножество <tex>M_i \subset M_0</tex>, <tex>\rho'(B)=1</tex> на всех <tex>B \in M_1^{m-1}</tex>, либо существует <tex>r_m(n_1,n_2-1)</tex>-элементное подмножество <tex>M_2 \subset M_0</tex>, <tex>\rho'(B)=2</tex> на всех <tex>B \in M_2^{m-1}</tex>. Случаи аналогичны, рассмотрим первый случай и множество <tex>M_1</tex>. <br> По индукционному предположен из <tex>|M_1|=r_m(n_1-1,n_2)</tex> следует, что либо существует <tex>n_1-1</tex>-элементное подмножество <tex>N_1 \subset M_1</tex>, <tex>\rho(A)=1</tex> на всех <tex>A \in N^m_1</tex>, либо существует <tex>n_2</tex>-элементное подмножество <tex>N_2 \subset M_1</tex>, <tex>\rho(A)=2</tex> на всех <tex>A \in N_2^m</tex>. Во втором случае искомое подмножество найдено (это <tex>N_2</tex>), рассмотрим первый случай и множество <tex>N=N_1 \cup \{a\}</tex>. Пусть <tex>A \in N^m</tex>. Если <tex>A \not\ni a</tex>, то <tex>A \in N_1^m</tex> и следовательно <tex>\rho(A)=1</tex>. Если же <tex>A \ni a</tex>, то множество <tex>A \setminus \{a\} \in N_1^{m-1} \subset M_1^{m-1}</tex> и поэтому <tex>\rho(A)=\rho'(A \setminus \{a \})=1</tex>. Учитывая, что <tex>|N|=n_1</tex>, мы нашли искомое подмножество и в этом случае. | |
− | + | # При <tex>k>2</tex> будем вести индукцию по <tex>k</tex> с доказанной выше базой <tex>k=2</tex>. При <tex>k>2</tex> мы докажем неравенство <tex>r_m(n_1,\ldots ,n_k) \leqslant q=r_m(r_m(n_1,\ldots ,n_{k-1}),n_k)</tex>. <br> Для этого мы рассмотрим множество <tex>M</tex> на <tex>q</tex> вершинах и произвольную раскраску <tex>\rho:M^m \rightarrow [1 \ldots k]</tex> в <tex>k</tex>цветов. Рассмотрим раскраску <tex>\rho':M^m \rightarrow \{0,k\}</tex>, в которой цвета <tex>1,\ldots,k-1</tex> раскраски <tex>\rho</tex> склеены в цвет <tex>0</tex>. Тогда существует либо такое подмножество <tex>M_0 \subset M</tex>, что <tex>|M_0|=r_m(n_1,\ldots ,n_{k-1})</tex> и <tex>\rho'(A)=0</tex> на всех <tex>A \in M_0^m</tex>, либо существует такое <tex>n_k</tex>-элементное подмножество <tex>M_k \subset M</tex>, что <tex>\rho(A)=\rho'(A)=k</tex> на всех <tex>A \in M^m_k</tex>. Во втором случае <tex>M_k</tex> — искомое подмножество, а в первом случае заметим, что на любом подмножестве <tex>A \in M_0^m</tex> из <tex>\rho'(A)=0</tex> следует <tex>\rho(A) \in [1 \ldots k-1]</tex>. Исходя из размера множества <tex>M_0</tex> по индукционному предположению получаем, что найдется искомое подмножество множества <tex>M</tex> для одного из цветов <tex>1,\ldots ,k-1</tex>, таким образом неравенство доказано, а из этого следует и существование числа Рамсея <tex>r_m(n_1,\ldots ,n_k)</tex>. | |
− | Рассмотрим <tex>(p+1)</tex>-элементное множество <tex>M</tex> и выделим в нём элемент <tex>a</tex>. Пусть <tex>M_0=M \setminus \{ a \}</tex>. Пусть <tex>\rho:M^m\rightarrow \{1, 2 \} </tex> — произвольная раскраска в два цвета. Рассмотрим раскраску <tex>\rho': M_0^{m-1} \rightarrow \{1, 2\} </tex> , определённую следующим образом: для каждого множества <tex>B \in M_0^{m-1}</tex> пусть <tex>\rho'(B) = \rho(B \cup \{ a \})</tex>. | ||
− | Так как <tex>|M_0|=p</tex>, либо существует <tex>r_m(n_1 — 1,n_2)</tex>-элементное подмножество <tex>M_i \subset M_0</tex>, <tex>\rho'(B)=1</tex> на всех <tex>B \in M_1^{m-1}</tex>, либо существует <tex>r_m(n_1,n_2-1)</tex>-элементное подмножество <tex>M_2 \subset M_0</tex>, <tex>\rho'(B)=2</tex> на всех <tex>B \in M_2^{m-1}</tex>. Случаи аналогичны, рассмотрим первый случай и множество <tex>M_1</tex>. | ||
− | По индукционному предположен из <tex>|M_1|=r_m(n_1-1,n_2)</tex> следует, что либо существует <tex>n_1-1</tex>-элементное подмножество <tex>N_1 \subset M_1</tex>, <tex>\rho(A)=1</tex> на всех <tex>A \in N^m_1</tex>, либо существует <tex>n_2</tex>-элементное подмножество <tex>N_2 \subset M_1</tex>, <tex>\rho(A)=2</tex> на всех <tex>A \in N_2^m</tex>. Во втором случае искомое подмножество найдено (это <tex>N_2</tex>), рассмотрим первый случай и множество <tex>N=N_1 \cup \{a\}</tex>. Пусть <tex>A \in N^m</tex>. Если <tex>A \not\ni a</tex>, то <tex>A \in N_1^m</tex> и следовательно <tex>\rho(A)=1</tex>. Если же <tex>A \ni a</tex>, то множество <tex>A \setminus \{a\} \in N_1^{m-1} \subset M_1^{m-1}</tex> и поэтому <tex>\rho(A)=\rho'(A \setminus \{a \})=1</tex>. Учитывая, что <tex>|N|=n_1</tex>, мы нашли искомое подмножество и в этом случае. | ||
− | |||
− | |||
− | <tex>r_m(n_1,\ldots ,n_k) \leqslant q=r_m(r_m(n_1,\ldots ,n_{k-1}),n_k)</tex> | ||
− | |||
− | Для этого мы рассмотрим множество <tex>M</tex> на <tex>q</tex> вершинах и произвольную раскраску <tex>\rho:M^m \rightarrow [1 \ldots k]</tex> в <tex>k</tex>цветов. Рассмотрим раскраску <tex>\rho':M^m \rightarrow \{0,k\}</tex>, в которой цвета <tex>1,\ldots,k-1</tex> раскраски <tex>\rho</tex> склеены в цвет <tex>0</tex>. Тогда существует либо такое подмножество <tex>M_0 \subset M</tex>, что <tex>|M_0|=r_m(n_1,\ldots ,n_{k-1})</tex> и <tex>\rho'(A)=0</tex> на всех <tex>A \in M_0^m</tex>, либо существует такое <tex>n_k</tex>-элементное подмножество <tex>M_k \subset M</tex>, что <tex>\rho(A)=\rho'(A)=k</tex> на всех <tex>A \in M^m_k</tex>. Во втором случае <tex>M_k</tex> — искомое подмножество, а в первом случае заметим, что на любом подмножестве <tex>A \in M_0^m</tex> из <tex>\rho'(A)=0</tex> следует <tex>\rho(A) \in [1 \ldots k-1]</tex>. Исходя из размера множества <tex>M_0</tex> по индукционному предположению получаем, что найдется искомое подмножество множества <tex>M</tex> для одного из цветов <tex>1,\ldots ,k-1</tex>, таким образом неравенство доказано, а из этого следует и существование числа Рамсея <tex>r_m(n_1,\ldots ,n_k)</tex>. | ||
}} | }} | ||
Строка 257: | Строка 235: | ||
|id=def8 | |id=def8 | ||
|definition= | |definition= | ||
− | Пусть <tex>H_1,H_2</tex> — графы. '''Число Рамсея''' <tex>r(H_1,H_2)</tex> — это наименьшее из всех таких чисел <tex>x \in \mathbb N</tex>, что при любой раскраске рёбер полного графа на <tex>x</tex> вершинах в два цвета обязательно найдется подграф, изоморфный <tex>H_1</tex> с рёбрами цвета <tex>1</tex> или подграф изоморфный <tex>H_2</tex> с рёбрами цвета <tex>2</tex>. | + | Пусть <tex>H_1,H_2</tex> — графы. '''Число Рамсея''' <tex>r(H_1,H_2)</tex> — это наименьшее из всех таких чисел <tex>x \in \mathbb N</tex>, что при любой раскраске рёбер полного графа на <tex>x</tex> вершинах в два цвета обязательно найдется подграф, [[Основные определения теории графов#isomorphic_graphs|изоморфный]] <tex>H_1</tex> с рёбрами цвета <tex>1</tex> или подграф изоморфный <tex>H_2</tex> с рёбрами цвета <tex>2</tex>. |
}} | }} | ||
Существует и другое определение чисел Рамсея для произвольных графов. | Существует и другое определение чисел Рамсея для произвольных графов. | ||
Строка 268: | Строка 246: | ||
{{Лемма | {{Лемма | ||
− | |id=l1|about=1|statement=Пусть <tex>m>1</tex>, а граф <tex>H</tex> таков, что <tex>v(H) \geqslant (m-1)(n-1)+1</tex> и <tex>\alpha(H) \leqslant m-1</tex>, где <tex>v(H)</tex> {{---}} количество вершин в графе <tex>H</tex>. Тогда граф <tex>H</tex> содержит в качестве подграфа любое дерево на <tex>n</tex> вершинах. | + | |id=l1|about=1|statement=Пусть <tex>m>1</tex>, а граф <tex>H</tex> таков, что <tex>v(H) \geqslant (m-1)(n-1)+1</tex> и <tex>\alpha(H) \leqslant m-1</tex>, где <tex>v(H)</tex> {{---}} количество вершин в графе <tex>H</tex>. Тогда граф <tex>H</tex> содержит в качестве подграфа любое [[Основные определения теории графов#defTree|дерево]] на <tex>n</tex> вершинах. |
|proof= | |proof= | ||
Зафиксируем <tex>m</tex> и проведем индукцию по <tex>n</tex>. | Зафиксируем <tex>m</tex> и проведем индукцию по <tex>n</tex>. | ||
Строка 274: | Строка 252: | ||
'''База:''' для <tex>n=1</tex> очевидно. | '''База:''' для <tex>n=1</tex> очевидно. | ||
− | '''Индукционный переход:''' Пусть верно для <tex>n-1</tex>, докажем для <tex>n</tex>. Рассмотрим произвольное дерево <tex>T_n</tex> на <tex>n</tex> вершинах, пусть дерево <tex>T_{n-1}</tex> получено из <tex>T_n</tex> удалением висячей вершины. Пусть <tex>U</tex> — максимальное независимое | + | '''Индукционный переход:''' Пусть верно для <tex>n-1</tex>, докажем для <tex>n</tex>. Рассмотрим произвольное дерево <tex>T_n</tex> на <tex>n</tex> вершинах, пусть дерево <tex>T_{n-1}</tex> получено из <tex>T_n</tex> удалением висячей вершины. Пусть <tex>U</tex> — максимальное независимое множество вершин графа <tex>H</tex>. Тогда <tex>|U|=\alpha(H) \leqslant m-1</tex>, следовательно <tex>v(H-U) \geqslant (m-1)(n-2)+1</tex> и очевидно <tex>\alpha(H-U) \leqslant m-1</tex>. |
По индукционному предположению, граф <tex>H-U</tex> содержит в качестве подграфа дерево <tex>T_{n-1}</tex>. Пусть <tex>a</tex> — вершина этого дерева, присоединив к которой висячую вершину, мы получим дерево <tex>T_n</tex>. Заметим, что множество <tex>U \cup</tex> <tex>\{a\}</tex> не является независимым ввиду максимальности <tex>U</tex>. Следовательно, вершина <tex>a</tex> смежна хотя бы с одной вершиной <tex>x \in U</tex>. Отметим, что <tex>x</tex> не принадлежит множеству вершин графа <tex>T_{n-1}</tex> и, присоединив вершину <tex>x</tex> к вершине <tex>a</tex> дерева <tex>T_{n-1}</tex>, получим дерево <tex>T_n</tex> в качестве подграфа графа <tex>H</tex>. | По индукционному предположению, граф <tex>H-U</tex> содержит в качестве подграфа дерево <tex>T_{n-1}</tex>. Пусть <tex>a</tex> — вершина этого дерева, присоединив к которой висячую вершину, мы получим дерево <tex>T_n</tex>. Заметим, что множество <tex>U \cup</tex> <tex>\{a\}</tex> не является независимым ввиду максимальности <tex>U</tex>. Следовательно, вершина <tex>a</tex> смежна хотя бы с одной вершиной <tex>x \in U</tex>. Отметим, что <tex>x</tex> не принадлежит множеству вершин графа <tex>T_{n-1}</tex> и, присоединив вершину <tex>x</tex> к вершине <tex>a</tex> дерева <tex>T_{n-1}</tex>, получим дерево <tex>T_n</tex> в качестве подграфа графа <tex>H</tex>. | ||
}} | }} | ||
{{Теорема | {{Теорема | ||
|id=ter5 | |id=ter5 | ||
− | |author=5, Хватала | + | |author=5, Теорема Хватала |
|statement=<tex>r(T_n,K_m)=(m-1)(n-1)+1</tex>, где <tex>T_n</tex> — дерево на <tex>n</tex> вершинах. | |statement=<tex>r(T_n,K_m)=(m-1)(n-1)+1</tex>, где <tex>T_n</tex> — дерево на <tex>n</tex> вершинах. | ||
|proof= | |proof= | ||
− | + | Сперва докажем, что <tex>r(T_n,K_m) \geqslant (m-1)(n-1)+1</tex>. Для этого предъявим раскраску рёбер графа <tex>K_{(m-1)(n-1)}</tex>, в которой нет ни одного связного подграфа на <tex>n</tex> вершинах с рёбрами цвета <tex>1</tex> и нет клики на <tex>m</tex> вершинах с рёбрами цвета <tex>2</tex>. Разобьём вершины графа на <tex>m-1</tex> клику по <tex>n-1</tex> вершине и покрасим все рёбра этих клик в цвет <tex>1</tex>. Тогда любой связный подграф с рёбрами цвета <tex>1</tex> содержит не более <tex>n-1</tex> вершины, в частности, нет подграфа с рёбрами цвета <tex>1</tex>, изоморфного <tex>T_n</tex>. Рёбра цвета <tex>2</tex> (то есть, все оставшиеся рёбра) образуют <tex>(m-1)</tex>-дольный граф, в котором, очевидно, нет клики на <tex>m</tex> вершинах. | |
− | + | Теперь воспользуемся вторым [[#def16|определением]] числа Рамсея <tex>r(H_1, H_2)</tex>. Рассмотрим произвольный граф <tex>G</tex> на <tex>{(m-1)(n-1)+1}</tex> вершинах. Предположим, что в графе <tex>G</tex> не существует клики на <tex>m</tex> вершинах. Тогда <tex>m>1</tex> и <tex>\alpha( \overline G) \leqslant m-1</tex>. По [[#l1|лемме <tex>1</tex>]], граф <tex> \overline G</tex> содержит в качестве подграфа любое дерево на <tex>n</tex> вершинах, в частности, дерево, изоморфное <tex>T_n</tex>. | |
− | |||
}} | }} | ||
Строка 294: | Строка 271: | ||
{{Определение | {{Определение | ||
|id=def10 | |id=def10 | ||
− | |definition=Пусть <tex>H</tex> — граф. Граф <tex>G</tex> будем называть '''рамсеевским графом''' для <tex>H</tex>, если при любой раскраске рёбер графа <tex>G</tex> в два цвета существует одноцветный по рёбрам индуцированный подграф графа <tex>G</tex> изоморфный <tex>H</tex>.}} | + | |definition=Пусть <tex>H</tex> — граф. Граф <tex>G</tex> будем называть '''рамсеевским графом''' (англ. ''Ramsey’s graph'') для <tex>H</tex>, если при любой раскраске рёбер графа <tex>G</tex> в два цвета существует одноцветный по рёбрам индуцированный подграф графа <tex>G</tex> изоморфный <tex>H</tex>.}} |
{{Определение | {{Определение | ||
Строка 324: | Строка 301: | ||
* [[wikipedia:Ramsey's theorem|Wikipedia — Ramsey's theorem]] | * [[wikipedia:Ramsey's theorem|Wikipedia — Ramsey's theorem]] | ||
* [[wikipedia:Ramsey theory|Wikipedia — Ramsey theory]] | * [[wikipedia:Ramsey theory|Wikipedia — Ramsey theory]] | ||
− | |||
* [http://people.maths.ox.ac.uk/~gouldm/ramsey.pdf Ramsey Theory] | * [http://people.maths.ox.ac.uk/~gouldm/ramsey.pdf Ramsey Theory] | ||
+ | *[https://vtechworks.lib.vt.edu/bitstream/handle/10919/32873/Dickson_JO_T_2011.pdf?sequence=1&isAllowed=y An Introduction to Ramsey Theory on Graphs] | ||
+ | *[http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1| Small Ramsey Numbers by Stanisław Radziszowski] | ||
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория:Дискретная математика]] | [[Категория:Дискретная математика]] | ||
[[Категория:Теория графов]] | [[Категория:Теория графов]] | ||
[[Категория: Раскраски графов]] | [[Категория: Раскраски графов]] |
Текущая версия на 09:57, 24 июня 2019
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок.
Содержание
Числа Рамсея[править]
Определение: |
Клика (англ. clique) в неориентированном графе — подмножество вершин , такое что для любых двух различных вершин в существует ребро, их соединяющее. Другими словами, клика графа — полный подграф графа . |
Определение: |
Число Рамсея | (англ. Ramsey's number) — наименьшее из таких чисел , что при любой раскраске ребер полного графа на вершинах в два цвета найдется клика на вершинах с ребрами цвета или клика на вершинах с ребрами цвета .
Существует и другое определение для чисел Рамсея.
Определение: |
Число Рамсея | — это наименьшее из всех таких чисел , что для любого графа на вершинах либо в найдется , либо в найдется граф .
Несложно доказать, что данные определения эквивалентны. Достаточно показать, что раскрашенному в два цвета графу [1]. Пусть на вечеринке каждые два человека могут быть либо друзьями, либо незнакомцами, в общем виде задачи требуется найти, какое минимальное количество людей нужно взять, чтобы хотя бы человек были попарно знакомы, или хотя бы человек были попарно незнакомы. Если мы переформулируем данную задачу в терминах графов, то как раз получим определение числа Рамсея , представленное ранее.
, можно однозначно поставить в соответствие граф на вершинах. Довольно часто определение для чисел Рамсея дается через задачу "о друзьях и незнакомцах"Пример[править]
Чтобы получить лучшее представление природы чисел Рамсея, приведем пример. Докажем, что
. Представим, что ребра раскрашены в два цвета: красный и синий. Возьмем вершину . Данной вершине, как и всем другим, инцидентны рёбер, тогда, согласно принципу Дирихле, хотя бы три из них одного цвета. Для определенности положим, что хотя бы ребра, соединяющие вершину с вершинами , , , синие. Если хотя бы одно из ребер , , синее, то в графе есть синий треугольник (полный граф на трёх вершинах), иначе, если они все красные, есть красный треугольник. Таким образом, . Чтобы доказать, что , предъявим такую раскраску графа , где нет клики на трех вершинах ни синего, ни красного цвета. Такая раскраска представлена на рисунке справа. Понятно, что предъявлять отдельные раскраски для , не нужно, так как достаточно взять соответствующие подграфы раскрашенного .Теорема Рамсея. Оценки сверху[править]
Теорема (1, Теорема Рамсея): |
Для любых существует число , при этом , а также если числа и четные, то неравенство принимает вид . |
Доказательство: |
|
Утверждение (1): |
Для натуральных чисел выполняется равенство |
Очевидно, при или , как и соответствующие числа Рамсея. Индукцией по и при получаем |
Оценки снизу[править]
Теорема (2, Теорема Эрдеша): |
Для любого натурального числа выполняется неравенство |
Доказательство: |
Так как , достаточно рассмотреть случай . Пусть доля среди помеченных графов на вершинах тех, что содержат клику на вершинах. Всего графов на наших вершинах, очевидно (каждое из возможных рёбер можно провести или не провести).Посчитаем графы с кликой на вершинах следующим образом: существует способов выбрать вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведенными, а остальные ребра выбираются произвольно. Таким образом, каждый граф с кликой на вершинах будет посчитан, причём некоторые даже более одного раза. Количестве графов с кликой оказывается не более, чем . Следовательно,
Подставив в неравенство мы получаемПредположим, что при и разобьём все графы на вершинах на пары . Так как , то существует пара , в которой ни , ни не содержат подграфа на вершинах. Рассмотрим раскраску рёбер в два цвета, в которой ребра цвета образуют граф . В такой раскраске нет клики на вершинах ни цвета , ни цвета , получили противоречие. Значит было выбрано неверно. Из этого следует . |
Свойства чисел Рамсея[править]
Следующими свойствами удобно пользоваться при подсчете значений чисел Рамсея
на практике.Значения чисел Рамсея[править]
Задача нахождения точных значений чисел Рамсея чрезвычайно трудна, их известно довольно мало. Далее приведена таблица Станислава Радзишевского, в которой присутствуют практически все известные числа Рамсея или же промежутки, в которых они находятся.
Числа Рамсея | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Числа Рамсея для раскрасок в несколько цветов[править]
Теперь обобщим числа Рамсея на произвольное количество цветов.
Определение: |
Число Рамсея | — это наименьшее из всех таких чисел , что при любой раскраске рёбер полного графа на вершинах в цветов для некоторого обязательно найдётся клика на вершинах с рёбрами цвета .
Теорема (3,Теорема Рамсея для нескольких цветов): |
существует число Рамсея , при этом |
Доказательство: |
Возьмем граф из | вершин и окрасим его рёбра в цветов. Пока что будем считать цвета и одним цветом. Тогда граф будет -цветным. Согласно определению числа Рамсея , такой граф либо содержит для некоторого цвета , такого что , либо , окрашенный общим цветом и . В первом случае доказательство завершено. Во втором случае вернём прежние цвета и заметим, что, по определению числа Рамсея, полный — вершинный граф содержит либо цвета , либо цвета . Таким образом любое число Рамсея для раскраски в цветов ограничено некоторым числом Рамсея для меньшего количества цветов, следовательно, существует для любых , и теорема доказана.
Числа Рамсея больших размерностей[править]
Определение: |
Пусть | , причём . Число Рамсея — наименьшее из всех таких чисел , что при любой раскраске -элементных подмножеств -элементного множества в цветов для некоторого обязательно найдётся такое множество , что и все -элементные подмножества множества имеют цвет . Число называют размерностью числа Рамсея .
Заметим, что числа Рамсея размерности
— это определённые ранее числа Рамсея для клик.Теорема (4, Теорема Рамсея для чисел больших размерностей): |
Пусть — натуральные числа, причем , а . Тогда существует число Рамсея . |
Доказательство: |
|
Числа Рамсея для произвольных графов[править]
Еще один способ обобщения классической теории Рамсея — замена клик на произвольные графы-шаблоны.
Определение: |
Пусть изоморфный с рёбрами цвета или подграф изоморфный с рёбрами цвета . | — графы. Число Рамсея — это наименьшее из всех таких чисел , что при любой раскраске рёбер полного графа на вершинах в два цвета обязательно найдется подграф,
Существует и другое определение чисел Рамсея для произвольных графов.
Определение: |
Пусть | — графы. Число Рамсея — это наименьшее из всех таких чисел , что для любого графа на вершинах либо в найдется подграф изоморфный , либо в найдется подграф изоморфный .
Несложно показать, что эти определения эквивалентны (аналогично определениям для классических чисел Рамсея). Из результатов классической теории Рамсея становится понятно, что числа
существуют.Лемма (1): |
Пусть дерево на вершинах. | , а граф таков, что и , где — количество вершин в графе . Тогда граф содержит в качестве подграфа любое
Доказательство: |
Зафиксируем и проведем индукцию по .База: для очевидно.Индукционный переход: Пусть верно для По индукционному предположению, граф , докажем для . Рассмотрим произвольное дерево на вершинах, пусть дерево получено из удалением висячей вершины. Пусть — максимальное независимое множество вершин графа . Тогда , следовательно и очевидно . содержит в качестве подграфа дерево . Пусть — вершина этого дерева, присоединив к которой висячую вершину, мы получим дерево . Заметим, что множество не является независимым ввиду максимальности . Следовательно, вершина смежна хотя бы с одной вершиной . Отметим, что не принадлежит множеству вершин графа и, присоединив вершину к вершине дерева , получим дерево в качестве подграфа графа . |
Теорема (5, Теорема Хватала): |
, где — дерево на вершинах. |
Доказательство: |
Сперва докажем, что Теперь воспользуемся вторым . Для этого предъявим раскраску рёбер графа , в которой нет ни одного связного подграфа на вершинах с рёбрами цвета и нет клики на вершинах с рёбрами цвета . Разобьём вершины графа на клику по вершине и покрасим все рёбра этих клик в цвет . Тогда любой связный подграф с рёбрами цвета содержит не более вершины, в частности, нет подграфа с рёбрами цвета , изоморфного . Рёбра цвета (то есть, все оставшиеся рёбра) образуют -дольный граф, в котором, очевидно, нет клики на вершинах. определением числа Рамсея . Рассмотрим произвольный граф на вершинах. Предположим, что в графе не существует клики на вершинах. Тогда и . По лемме , граф содержит в качестве подграфа любое дерево на вершинах, в частности, дерево, изоморфное . |
Индуцированная теорема Рамсея[править]
Определение: |
Граф | называется индуцированным подграфом (англ. induced subgraph) графа если две вершины в соединены ребром тогда и только тогда, когда они смежны в .
Определение: |
Пусть | — граф. Граф будем называть рамсеевским графом (англ. Ramsey’s graph) для , если при любой раскраске рёбер графа в два цвета существует одноцветный по рёбрам индуцированный подграф графа изоморфный .
Определение: |
Индуцированным числом Рамсея (англ. induced Ramsey’s number) | для графа будем называть минимальное число , такое что существует рамсеевский граф на вершинах для графа .
Заметим, что при замене произвольного графа
на клику мы получаем частный случай классической теоремы Рамсея.
Теорема (6, Индуцированная теорема Рамсея): |
Для любого графа существует рамсеевский граф . |
Доказательство [2] данной теоремы было приведено независимо различными математиками, однако благодаря ему получилось предоставить только очень грубые оценки значений индуцированных чисел Рамсея. В данный момент проблема нахождения сколько-нибудь точных границ индуцированных чисел Рамсея является нерешенной задачей математики.
Особенности теории[править]
Результаты, полученные в теории Рамсея, обладают двумя главными характеристиками. Во-первых, они не позволяют получить сами структуры: теоремы лишь доказывают, что они существуют, но алгоритма для их нахождения не предлагают. Единственным способ найти нужную конструкцию зачастую является перебор. Во-вторых, чтобы искомые структуры существовали, обычно требуется, чтобы объекты, их содержащие, состояли из очень большого числа элементов. Зависимость числа элементов объекта от размера конструкции обычно, как минимум, экспоненциальная.