Изменения

Перейти к: навигация, поиск

Теория Рамсея

43 байта добавлено, 02:49, 7 января 2014
Числа Рамсея для раскрасок в несколько цветов
{{Утверждение
|id=u3|about=3
|statement=
Отметим, что <tex>r(2;n,m)</tex> — это определённое ранее число Рамсея <tex>r(n,m)</tex>
}}
Обобщение оказывается настолько естественным что по сути не добавляет нам ничего нового: полностью аналогично [[#t1ter1|теореме1]] и [[#ts1u1|следствиюутверждению 1]] можно доказать следующие факты.
{{Теорема
|id=t3. ter3|about=3
|statement=Пусть <tex>k,n_1,...,n_k \ge 2</tex> - натуральные числа. Тогда выполняются следующие утверждения:
<tex>1) r(k;n_1,...,n_k) \le r(k;n_1-1,n_2,...,n_k)+r(k;n_1,n_2-1,...,n_k)++r(k;n_1,n_2,...,n_k-1)-k+2</tex>
<tex>2)r(k;n_1,...,n_k) \le \frac{(n_1+n_2+...+n_k)!}{n_1!*n_2!*...*n_k!}</tex>
|proof=
1) Доказательстве полностью аналогично пункту 1 доказательства [[#t1ter1|теоремы1]]
2) Доказательство аналогично [[#ts1u1|следствию утверждению 1]]. Нужно лишь убедиться в очевидном неравенстве для случая, когда хотя бы одно из чисел <tex>n_1,...,n_k</tex> равно 1 (левая часть в этом случае равна 1, а правая, очевидно не меньше 1) и заметить, что полиномиальные коэффициенты из очевидных комбинаторных соображений удовлетворяют соотношению:
<tex>\frac{(n_1+n_2+...+n_k)!}{n_1!*n_2!*...*n_k!}=\sum\limits_{i = 1}^k\frac{(n_1+...+(n_i-1)+...+n_k)!}{n_1!*...*(n_i-1)!*...*n_k!}</tex>
Следовательно, 2 неравенство из данной [[ter3|теоремы ]] выводится из неравенства 1 по индукции.
}}
299
правок

Навигация