Тестовая страница

Материал из Викиконспекты
Версия от 16:30, 22 июня 2012; Dgerasimov (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

<wikitex>

TODO: НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ

Теорема:
Если $f$ — функция ограниченной вариации ($f \in \bigvee(a, b)$), то ее можно представить в виде разности монотонно неубывающих функций ($f = f_1 - f_2$).
Доказательство:
[math]\triangleright[/math]

Возьмем в качестве $f_1$ функцию $f_1(x) = \bigvee\limits_a^x (f)$, тогда по аддитивности она будет не убывать. Определим как $f_2$ функцию $f_2(x) = f_1(x) - f(x)$. Докажем, что она монотонно не убывает. $a < x_1 < x_2 < b$. Надо доказать, что $f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)$, или что $f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)$ (используем утверждение 1).

Но действительно $f(x_2) - f(x_1) \le
[math]\triangleleft[/math]

</wikitex>