Тест Ферма проверки чисел на простоту, числа Кармайкла — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} {{Теорема |id=th1 |about=Малая теорема Ферма |statement= Если <tex>p</tex> простое и <tex>a</tex> л…»)
 
м (добавлена категория)
Строка 14: Строка 14:
  
 
Часть чисел проходят тест Ферма и при этом являются составными, такие числа называются псевдопростыми. Для любого основания <tex>a</tex> существует бесконечно много псевдопростых чисел по основанию <tex>a</tex>. Мы можем сделать тест более точным, проведя его несколько раз для одного и того же числа, но с разными основаниями. Но даже в этом случае существуют числа Кармайкла, проходящие тест для всех чисел, не являющихся их делителями.
 
Часть чисел проходят тест Ферма и при этом являются составными, такие числа называются псевдопростыми. Для любого основания <tex>a</tex> существует бесконечно много псевдопростых чисел по основанию <tex>a</tex>. Мы можем сделать тест более точным, проведя его несколько раз для одного и того же числа, но с разными основаниями. Но даже в этом случае существуют числа Кармайкла, проходящие тест для всех чисел, не являющихся их делителями.
 +
 +
[[Категория: Теория чисел]]

Версия 08:32, 29 июня 2010

Эта статья находится в разработке!
Теорема (Малая теорема Ферма):
Если [math]p[/math] простое и [math]a[/math] любое, то [math]a^p\equiv a\pmod p[/math] в частности, если [math]p[/math] не делитель [math]a[/math], то [math]a^{p-1}\equiv 1\pmod p[/math]

На основании этой теоремы можно построить достаточно мощный тест на простоту:

Тест Ферма

Для любого [math]n\gt 1[/math] выбираем [math] a\gt 1[/math], вычисляем [math]a^{n-1}\mod n[/math], если результат не [math]1[/math], то [math]n[/math] составное, если [math]1[/math], то [math]n[/math] — слабовозможно простое.

Часть чисел проходят тест Ферма и при этом являются составными, такие числа называются псевдопростыми. Для любого основания [math]a[/math] существует бесконечно много псевдопростых чисел по основанию [math]a[/math]. Мы можем сделать тест более точным, проведя его несколько раз для одного и того же числа, но с разными основаниями. Но даже в этом случае существуют числа Кармайкла, проходящие тест для всех чисел, не являющихся их делителями.