Изменения

Перейти к: навигация, поиск

Типы дифференциальных уравнений

191 байт убрано, 21:34, 23 сентября 2020
Исправлена опечатка в производной, в способе решения методом Лагранжа
==Однородные уравнения==
{{Определение|definition = уравнение вида <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (3)</tex>, где M и N - однородные функции одного измерения, называется однородным уравнением}}
{{Определение | definition= <tex>f(x, y) \ - </tex> однородная функция измерения n <tex>\Leftrightarrow \: f(\lambda x, \lambda y) = \lambda^{n}f(x, y)</tex> }}<b>Решение:</b> произвести замену <tex>t = \fracdfrac{y}{x}</tex> {{Определение | definition= <tex dpi=150>\dfrac{dy}{dx}=f\left(\dfrac{y}{x}\right) \ -</tex>один из видов однородного уравнения. }}
{{Определение | definition= <tex dpi=150>\frac{dy}{dx}=f(\frac{y}{x})</tex> - один из видов однородного уравнения. }}
==Уравнения приводящиеся к однородным==
{{Определение|definition= уравнение вида <tex dpi = 150>\fracdfrac{dy}{dx}= f\left(\fracdfrac{a_{1}x + b_{1}y + c_{1}}{a_{2}x + b_{2}y + c_{2}}\right) (4)</tex> называется уравнением приводящимся к однородному}}
{{Утверждение|statement =
Решением уравнения <tex>(4)</tex> является:
Рассмотрим:
<tex> \frac{dxdy}{dydx} = p(x) y </tex>
Рассмотрим общее однородное(O.O) и общее неоднородное решение(O.H):
<tex>y(x) = e^{\int p(x)dx} [ \int q(x) e^{\int p(x)dx} dx + C_{1}] </tex>
 
===Способ решения методом Игоря Сушенцева===
Запомнить формулу:<br>
<tex>y(x) = e^{\int p(x)\mathrm dx} \left[ \int q(x) e^{\int p(x)\mathrm dx} dx + C_{1} \right] </tex>
==Уравнение в полных дифференциалах==
{{Определение| definition= Уравнение вида: <tex>M(x, y)dx + N(x, y)dy = 0 \:\: (6)</tex> называется уравнением в полных дифференциалах, если <tex>(6) = du(x, y)</tex>}}
т.к. <tex>du(x, y) = 0 \Leftrightarrow u(x, y) = C \: -</tex> общий интеграл.
{{Теорема|statement = Пусть <tex>M(x, y), N(x, y) \in C(G)</tex>, где G - односвязная область, и <tex>\frac{\partial M(x,y)}{\partial y}, \: \frac{\partial N(x, y)}{\partial x} \in C(G)</tex>; <br> Тогда <tex>Mdx + Ndy = du \: \Leftrightarrow \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>| proof = Рассмотрим первоначальное уравнение: <br> <tex> M(x,y)dx + N(x,y)dy = 0 </tex> <br> Перепишем его в виде: <tex> M(x,y)dx + N(x,y)dy \equiv du(x,y) = \dfrac{\partial u}{\partial x}dx + \dfrac{\partial u}{\partial y}dy. </tex> <br> Тогда видим, что <tex> \dfrac{\partial u}{\partial x} = M, \dfrac{\partial u}{\partial y} = N </tex> <br> Т.к.<tex> M,N </tex> - непрерывные на <tex> C </tex>, то давайте рассмотрим <tex> \dfrac{\partial^2 u}{\partial x \partial y} = \dfrac{\partial M}{\partial y} </tex> и <tex> \dfrac{\partial^2 u}{\partial y \partial x} = \dfrac{\partial N}{\partial x} </tex> <br> Левые части в этих равенствах равны, а следовательно равны и правые. Необходимость доказана. <br> Докажем теперь достаточность. <br> Предположим, что равенство частных производных выполняется, тогда рассмотрим следующую функцию: <br> <tex> a(x,y) = \int_{x_{0}}^{x}M(q, y)dq + \int_{y_{0}}^{y}N(x_{0}, z)dz </tex> <br> Найдем для нее частные производные по <tex> x </tex> и <tex> y </tex>: <br> <tex> \dfrac{\partial a}{\partial x} = M(x,y) </tex>, а дифференцируя по <tex> y </tex> и учитывая условие <tex> \frac{\partial M(x, y)}{\partial y} \equiv \frac{\partial N(x, y)}{\partial x} </tex>, получаем : <br> <tex> \dfrac{\partial a}{\partial y} = \int_{x_{0}}^{x}\frac{\partial M(q, y)}{\partial y}dq + N(x_0, y) = N(x,y) - N(x_0,y) + N(x_0,y) = N(x,y) </tex> , достаточность доказана, т.к. <tex> a(x,y) = u(x,y) - общий интеграл </tex> - общий интеграл . }}
<b>Решение:</b> <tex>u(x, y) = \int_{x_{0}}^{x}M(x, y)dx + \int_{y_{0}}^{y}N(x_{0}, y)dy = C \: - </tex> Общее решение.
<tex>
\left\{\begin{matrix}
x = \int \frac{\phi'(t)dt}{t}
\\y = \phi(t)
\end{matrix}\right.</tex>
 
===уравнение Лагранжа===
{{Определение|definition= уравнение вида <tex>y = \phi(y')x + \psi(y')\:\: (12)</tex>, называется уравнением Лагранжа}}
Анонимный участник

Навигация