Толстая куча на избыточном счётчике — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 116: Строка 116:
 
===Фиксация цифры===
 
===Фиксация цифры===
 
Фиксацией цифры <tex>b</tex>, стоящей в <tex>i</tex>-м разряде представления <tex>d</tex>, (fix(i)) назовем операцию, заключающуюся в обнулении цифры <tex>d_i</tex>  и инкрементировании цифры <tex> d_{i+1} </tex>, при этом если <tex>i=n</tex> , то полагаем  <tex>d_{i+1} = 1</tex>. При каждом выполнении операции фиксации будем обновлять значение <tex>L'(i)</tex>. Очевидно, при  <tex>b>2</tex> операцию <tex>fix(i)</tex>  можно выполнить следующим образом:
 
Фиксацией цифры <tex>b</tex>, стоящей в <tex>i</tex>-м разряде представления <tex>d</tex>, (fix(i)) назовем операцию, заключающуюся в обнулении цифры <tex>d_i</tex>  и инкрементировании цифры <tex> d_{i+1} </tex>, при этом если <tex>i=n</tex> , то полагаем  <tex>d_{i+1} = 1</tex>. При каждом выполнении операции фиксации будем обновлять значение <tex>L'(i)</tex>. Очевидно, при  <tex>b>2</tex> операцию <tex>fix(i)</tex>  можно выполнить следующим образом:
<code>
+
fix('''int''' i):
    fixMMM('''int''' i):
+
  '''if''' d[i] == b
    '''if''' d[i] == b
+
    d[i] = 0
      d[i] = 0
+
    d[i + 1]++
      d[i + 1]++
+
  '''if''' d[i + 1] == b - 1:
    '''if''' d[i + 1] == b - 1:
+
    L'[i] = L'[i + 1]
      L'[i] = L'[i + 1]
+
  '''else'''
    '''else'''
+
    L'[i] = i + 1
      L'[i] = i + 1
+
 
</code>
 
  
 
===Инкремент===
 
===Инкремент===
 
Инкрементирование <tex>i</tex>-й цифры избыточного представления <tex>d</tex> <tex>inc(i)</tex> можно выполнить так:
 
Инкрементирование <tex>i</tex>-й цифры избыточного представления <tex>d</tex> <tex>inc(i)</tex> можно выполнить так:
<code>
+
inc('''int''' i):
  inc('''int''' i):
+
  fix(i)
    fix(i)
+
  '''if''' (d[i] == b - 1) '''or''' (d[i] == b - 2)
    '''if''' (d[i] == b - 1) '''or''' (d[i] == b - 2)
+
    fix(L'[i])
      fix(L'[i])
+
  d[i]++
    d[i]++
+
  fix(i)
    fix(i)
+
 
</code>
 
  
 
===Декремент===
 
===Декремент===
Строка 179: Строка 177:
 
===Обновление прямого указателя===
 
===Обновление прямого указателя===
 
Обновление прямого указателя <tex>i</tex>-го разряда корневого счетчика заключается в выполнении следующего псевдокода:
 
Обновление прямого указателя <tex>i</tex>-го разряда корневого счетчика заключается в выполнении следующего псевдокода:
<code>
+
updateForwardPionter('''int''' i):
  updateForwardPionter('''int''' i):
+
  '''if''' rootCount[i + 1].Value == 3 - 1
    '''if''' rootCount[i + 1].Value == 3 - 1
+
    rootCount[i].forwardPointer = rootCount[i + 1].forwardPointer
      rootCount[i].forwardPointer = rootCount[i + 1].forwardPointer
+
  '''else'''
    '''else'''
+
    rootCount[i].forwardPointer = i + 1
      rootCount[i].forwardPointer = i + 1
+
 
</code>
 
  
 
===Корректировка при вставке ===
 
===Корректировка при вставке ===
 
Корректировка списочной части <tex>i</tex>-го разряда корневого счетчика при вставке в кучу нового дерева ранга <tex>i~(insertTree(i,p))</tex>. Эта процедура вставляет новое дерево ранга  <tex>i</tex> (на него указывает указатель <tex>p</tex>) в списочную часть  <tex>i</tex>-го разряда корневого счетчика <tex>rootCount</tex> выглядит так:
 
Корректировка списочной части <tex>i</tex>-го разряда корневого счетчика при вставке в кучу нового дерева ранга <tex>i~(insertTree(i,p))</tex>. Эта процедура вставляет новое дерево ранга  <tex>i</tex> (на него указывает указатель <tex>p</tex>) в списочную часть  <tex>i</tex>-го разряда корневого счетчика <tex>rootCount</tex> выглядит так:
 +
insertTree(i, p):
 +
  p1 = rootCount[i].listPointer
 +
  '''if''' rootCount[i].Value <tex> \ne </tex> 0
 +
    p.right = p1
 +
  '''else'''
 +
    p.right = NULL
 +
  p.left = NULL
 +
  rootCount[i].listPointer = p
  
<code>
 
  insertTree(i, p):
 
    p1 = rootCount[i].listPointer
 
    '''if''' rootCount[i].Value <tex> \ne </tex> 0
 
      p.right = p1
 
    '''else'''
 
      p.right = NULL
 
    p.left = NULL
 
    rootCount[i].listPointer = p
 
</code>
 
  
 
===Корректировка при удалении===
 
===Корректировка при удалении===
 
Корректировка списочной части <tex>i</tex>-го разряда корневого счетчика при удалении из кучи дерева ранга <tex>i~(deleteTree(i,p))</tex>. Эта процедура удаляет дерево ранга <tex>i</tex> (на него указывает указатель <tex>p</tex>) из списочной части  <tex>i</tex>-го разряда корневого счетчика <tex>rootCount</tex> . Будем считать, что указанное дерево присутствует в куче. Процедура заключается в выполнении следующего псевдокода:
 
Корректировка списочной части <tex>i</tex>-го разряда корневого счетчика при удалении из кучи дерева ранга <tex>i~(deleteTree(i,p))</tex>. Эта процедура удаляет дерево ранга <tex>i</tex> (на него указывает указатель <tex>p</tex>) из списочной части  <tex>i</tex>-го разряда корневого счетчика <tex>rootCount</tex> . Будем считать, что указанное дерево присутствует в куче. Процедура заключается в выполнении следующего псевдокода:
 +
deleteTree(i, p):
 +
  p1 = rootCount[i].listPointer
 +
  '''if''' p1 == p
 +
    rootCount[i].listPointer = p.right
 +
  j = 1
 +
  '''while''' (j <tex> \le </tex> rootCount[i].Value) '''and''' (p1.right <tex> \ne </tex> p):
 +
    j++
 +
    p1 = p1.right
 +
  p1.right = p.right
  
<code>
 
  deleteTree(i, p):
 
    p1 = rootCount[i].listPointer
 
    '''if''' p1 == p
 
      rootCount[i].listPointer = p.right
 
    j = 1
 
    '''while''' (j <tex> \le </tex> rootCount[i].Value) '''and''' (p1.right <tex> \ne </tex> p):
 
      j++
 
      p1 = p1.right
 
    p1.right = p.right
 
</code>
 
  
 
===Связывание трех деревьев в одно===
 
===Связывание трех деревьев в одно===
 
'''Связывание''' <tex>(fastening (p1, p2, p3))</tex> трех толстых деревьев ранга <tex>i</tex> в одно толстое дерево ранга <tex>i+1</tex>. Эта функция принимает три указателя <tex>(p1, p2 ,p3)</tex>  на три разных толстых дерева одного и того же ранга <tex>i</tex>  и возвращает указатель на вновь сформированное дерево ранга <tex>i+1</tex> .
 
'''Связывание''' <tex>(fastening (p1, p2, p3))</tex> трех толстых деревьев ранга <tex>i</tex> в одно толстое дерево ранга <tex>i+1</tex>. Эта функция принимает три указателя <tex>(p1, p2 ,p3)</tex>  на три разных толстых дерева одного и того же ранга <tex>i</tex>  и возвращает указатель на вновь сформированное дерево ранга <tex>i+1</tex> .
 
Процедура заключается в выполнении следующего псевдокода:
 
Процедура заключается в выполнении следующего псевдокода:
 
+
fastening (p1, p2, p3):
<code>
+
  '''if''' (p1.key <tex> \le </tex> p2.key) '''and''' (p1.Key <tex> \le </tex> p3.key)
  fastening (p1, p2, p3):
+
    minP = p1
    '''if''' (p1.key <tex> \le </tex> p2.key) '''and''' (p1.Key <tex> \le </tex> p3.key)
+
    p1 = p2
      minP = p1
+
    p2 = p3
      p1 = p2
+
  '''if''' (p2.key <tex> \le </tex> p1.key) '''and''' (p2.key <tex> \le </tex> p3.key)
      p2 = p3
+
    minP = p2
    '''if''' (p2.key <tex> \le </tex> p1.key) '''and''' (p2.key <tex> \le </tex> p3.key)
+
    p1 = p1
      minP = p2
+
    p2 = p3
      p1 = p1
+
  '''if''' (p3.key <tex> \le </tex> p1.key) '''and''' (p3.key <tex> \le </tex> p2.key)
      p2 = p3
+
    minP = p3
    '''if''' (p3.key <tex> \le </tex> p1.key) '''and''' (p3.key <tex> \le </tex> p2.key)
+
    p1 = p1
      minP = p3
+
    p2 = p2
      p1 = p1
+
  p1.right = p2
      p2 = p2
+
  p1.left = NULL
    p1.right = p2
+
  p1.parent = minP
    p1.left = NULL
+
  p2.right = minP.lChild
    p1.parent = minP
+
  p2.left = p1
    p2.right = minP.lChild
+
  p2.parent = minP
    p2.left = p1
+
  '''if''' minP.lChild <tex> \ne </tex> NULL
    p2.parent = minP
+
    minP.lChild.left = p2
    '''if''' minP.lChild <tex> \ne </tex> NULL
+
  minP.lChild = p1
      minP.lChild.left = p2
+
  minP.rank = minP.rank + 1
    minP.lChild = p1
+
  minP.right = NULL
    minP.rank = minP.rank + 1
+
  minP.left = NULL
    minP.right = NULL
+
  '''return''' minP
    minP.left = NULL
 
    '''return''' minP
 
</code>
 
  
 
===Значение ключа элемента по указателю===
 
===Значение ключа элемента по указателю===
 
Функция <tex>getKey(p)</tex> по указателю p на элемент определяет значение его ключа:
 
Функция <tex>getKey(p)</tex> по указателю p на элемент определяет значение его ключа:
 
+
// ''под <tex>\infty</tex> нужно понимать нейтральный относительно минимума элемент.''
<code>
+
getKey(p):
  // ''под <tex>\infty</tex> нужно понимать нейтральный относительно минимума элемент.''
+
  '''if''' p == NULL
  getKey(p):
+
    min = <tex>\infty</tex>
    '''if''' p == NULL
+
  '''else'''
      min = <tex>\infty</tex>
+
    min = p.key
    '''else'''
+
  '''return''' min  
      min = p.key
 
    '''return''' min  
 
</code>
 
  
 
===Узел с минимальным ключом===
 
===Узел с минимальным ключом===
  
 
Функция <tex>minKeyNodeRoot(p)</tex>, которая по указателю <tex>p</tex> на списочную часть разряда корневого счетчика возвращает указатель на корневой узел с минимальным ключом:
 
Функция <tex>minKeyNodeRoot(p)</tex>, которая по указателю <tex>p</tex> на списочную часть разряда корневого счетчика возвращает указатель на корневой узел с минимальным ключом:
<code>
+
minKeyNodeRoot(p):
  minKeyNodeRoot(p):
+
  p1 = p
    p1 = p
+
  minP = p1
    minP = p1
+
  '''while''' p1 <tex> \ne </tex> NULL
    '''while''' p1 <tex> \ne </tex> NULL
+
    '''if''' p1.key < minP.key
      '''if''' p1.key < minP.key
+
      minP = p1
        minP = p1
+
      p1 = p1.right
        p1 = p1.right
+
  '''return''' minP
    '''return''' minP
 
</code>
 
  
 
===Операция фиксации <tex>rmFixRootCount(i)</tex>===
 
===Операция фиксации <tex>rmFixRootCount(i)</tex>===
 
Операция фиксации  <tex>i</tex>-го разряда корневого счетчика подразумевает, что его значение равно трем, а списочная часть содержит указатель на список деревьев ранга  <tex>i</tex>, состоящий ровно из трех деревьев. При выполнении этой операции значение в  <tex>i</tex>-м разряде — должно стать равным нулю, а значение в  <tex>i</tex>-м разряде увеличиться на единицу. То есть в куче не должно остаться деревьев ранга  <tex>i</tex>, а количество деревьев ранга  <tex>i+1</tex> должно увеличиться на единицу. Для этого следует удалить из кучи три присутствующих в ней дерева ранга <tex>i</tex> , связать их в дерево ранга  <tex>i+1</tex> и вставить вновь полученное дерево в кучу.
 
Операция фиксации  <tex>i</tex>-го разряда корневого счетчика подразумевает, что его значение равно трем, а списочная часть содержит указатель на список деревьев ранга  <tex>i</tex>, состоящий ровно из трех деревьев. При выполнении этой операции значение в  <tex>i</tex>-м разряде — должно стать равным нулю, а значение в  <tex>i</tex>-м разряде увеличиться на единицу. То есть в куче не должно остаться деревьев ранга  <tex>i</tex>, а количество деревьев ранга  <tex>i+1</tex> должно увеличиться на единицу. Для этого следует удалить из кучи три присутствующих в ней дерева ранга <tex>i</tex> , связать их в дерево ранга  <tex>i+1</tex> и вставить вновь полученное дерево в кучу.
 
Следует учесть, что ранг нового дерева может стать больше, чем <tex>maxRank</tex>, что потребует инициализации нового разряда. Для этого необходимо увеличить значение <tex>maxRank</tex> на единицу и заполнить новое поле, а также провести инициализацию нового разряда.
 
Следует учесть, что ранг нового дерева может стать больше, чем <tex>maxRank</tex>, что потребует инициализации нового разряда. Для этого необходимо увеличить значение <tex>maxRank</tex> на единицу и заполнить новое поле, а также провести инициализацию нового разряда.
 
+
rmFixRootCount(i)
<code>
+
  '''if''' maxRank == i
  rmFixRootCount(i)
+
    maxRank = i + 1
    '''if''' maxRank == i
+
    rootCount[i + 1].Value = 0
      maxRank = i + 1
+
    countViolation[i + 1].Value = 0
      rootCount[i + 1].Value = 0
+
  '''else'''
      countViolation[i + 1].Value = 0
+
    updateForwardPointer(i + 1)
    '''else'''
+
  rootCount[i].Value = 0
      updateForwardPointer(i + 1)
+
  p1 = rootCount[i].listPointer
    rootCount[i].Value = 0
+
  p2 = p1.right
    p1 = rootCount[i].listPointer
+
  p3 = p2.right
    p2 = p1.right
+
  p = fastening(p1, p2, p3)
    p3 = p2.right
+
  rootCount[i].listPointer = NULL
    p = fastening(p1, p2, p3)
+
  insertTree(i + 1, p)
    rootCount[i].listPointer = NULL
+
  rootCount[i + 1].Value = rootCount[i + 1].Value + 1  
    insertTree(i + 1, p)
 
    rootCount[i + 1].Value = rootCount[i + 1].Value + 1  
 
</code>
 
  
 
===Инкрементирование i-го разряда корневого счетчика===
 
===Инкрементирование i-го разряда корневого счетчика===
 
По сравнению с описанным алгоритмом инкрементирования <tex>i</tex>-го разряда избыточного представления здесь мы должны учесть работу со списочной частью и обновить прямые указатели.
 
По сравнению с описанным алгоритмом инкрементирования <tex>i</tex>-го разряда избыточного представления здесь мы должны учесть работу со списочной частью и обновить прямые указатели.
 
+
rmIncRootCount(i,p)
<code>
+
  '''if''' (rootCount[i].Value == 1) '''or''' (rootCount[i].Value == 2)
  rmIncRootCount(i,p)
+
    '''if''' rootCount[rootCount[i].forwardPointer].Value == 3
    '''if''' (rootCount[i].Value == 1) '''or''' (rootCount[i].Value == 2)
+
      fixRootCount(rootCount[i].forwardPointer);
      '''if''' rootCount[rootCount[i].forwardPointer].Value == 3
+
  '''if''' rootCount[i].Value == 3
        fixRootCount(rootCount[i].forwardPointer);
+
    fixRootCount(i)
    '''if''' rootCount[i].Value == 3
+
  insertTree(i, p)
      fixRootCount(i)
+
  rootCount[i].Value = rootCount[i].Value + 1
    insertTree(i, p)
+
  updateForwardPointer(i)
    rootCount[i].Value = rootCount[i].Value + 1
+
  '''if''' rootCount[i].Value == 3
    updateForwardPointer(i)
+
    fixRootCount(i)
    '''if''' rootCount[i].Value == 3
 
      fixRootCount(i)
 
</code>
 
  
 
===Удаление дерева из кучи===
 
===Удаление дерева из кучи===
 
Процедура удаления дерева из кучи подразумевает наличие в куче этого дерева. Пусть удаляемое дерево имеет ранг <tex>i</tex> . Тогда значение <tex>i</tex>-го разряда избыточного корневого представления не равно нулю. То есть уменьшение этого значения на единицу не испортит регулярности представления и не потребует обновления каких-либо указателей. Необходимо лишь соответствующим образом обработать списочную часть.
 
Процедура удаления дерева из кучи подразумевает наличие в куче этого дерева. Пусть удаляемое дерево имеет ранг <tex>i</tex> . Тогда значение <tex>i</tex>-го разряда избыточного корневого представления не равно нулю. То есть уменьшение этого значения на единицу не испортит регулярности представления и не потребует обновления каких-либо указателей. Необходимо лишь соответствующим образом обработать списочную часть.
<code>
+
delete(i, p):
  delete(i, p):
+
  deleteTree(i, p)
    deleteTree(i, p)
+
  rootCount[i].Value = rootCount[i].Value - 1
    rootCount[i].Value = rootCount[i].Value - 1
 
</code>
 
  
 
===Нахождение дерева с минимальным ключом в корне (<tex>minKey()</tex>)===
 
===Нахождение дерева с минимальным ключом в корне (<tex>minKey()</tex>)===
 
+
minKey()
<code>
+
  minP = NULL
  minKey()
+
  '''for''' i = 0 to maxRank:
    minP = NULL
+
    p1 = minKeyNodeRoot(rootCount[i].listPointer)
    '''for''' i = 0 to maxRank:
+
    '''if''' getKey(p1) < getKey(minP):
      p1 = minKeyNodeRoot(rootCount[i].listPointer)
+
      minP = p1
      '''if''' getKey(p1) < getKey(minP):
+
  '''return''' minP
        minP = p1
 
    '''return''' minP
 
</code>
 
  
 
==Счетчик нарушений==
 
==Счетчик нарушений==
Строка 384: Строка 358:
 
* <tex>deleteViolation</tex>
 
* <tex>deleteViolation</tex>
 
Для освобождения кучи от нарушений достаточно выполнить следующий псевдокод:
 
Для освобождения кучи от нарушений достаточно выполнить следующий псевдокод:
 
+
deleteViolation(h2):
<code>
+
  '''for''' i = 0 '''to''' h2.maxRank
  deleteViolation(h2):
+
  '''if''' countViolation[i].Value == 2
    '''for''' i = 0 '''to''' h2.maxRank
+
    fixCountViolation(i)
    '''if''' countViolation[i].Value == 2
+
  '''for''' i = 0 to h2.maxRank
      fixCountViolation(i)
+
    '''if''' countViolation[i].Value == 1
    '''for''' i = 0 to h2.maxRank
+
      incCountViolation(i, searchBrother(countViolation[i].rmFirstviolation))
      '''if''' countViolation[i].Value == 1
+
      fixCountViolation(i)
        incCountViolation(i, searchBrother(countViolation[i].rmFirstviolation))
 
        fixCountViolation(i)
 
</code>
 
  
 
=Источники=
 
=Источники=

Версия 11:17, 9 апреля 2016

Толстое дерево

Определение:
Определяем толстое дерево (англ. Fat Heap) [math]F_k[/math] ранга [math]k ~(k = 0, 1, 2 ~\dots )[/math] следующим образом:
  • Толстое дерево [math]F_0[/math] ранга ноль состоит из единственного узла.
  • Толстое дерево [math]F_k[/math] ранга [math]k[/math], для [math]k = 1, 2, 3,\dots [/math], состоит из трех деревьев [math]F_{k-1}[/math] ранга [math]k[/math],таких, что корни двух из них являются самыми левыми потомками корня третьего.
Ранг узла [math]x[/math] в толстом дереве определяется как ранг толстого поддерева с корнем в узле [math]x[/math].
Пример толстых деревьев [math]F_0, F_1, F_2, F_3[/math]


Утверждение:
Свойства толстых деревьев:
  • В толстом дереве ранга [math]k[/math] ровно [math]3^k[/math] узлов.
  • Для любого натурального числа [math]n[/math] существует лес из толстых деревьев, в котором ровно [math]n[/math] узлов. Такой лес можно построить, включив в него столько деревьев ранга [math]i[/math], каково значение [math]i[/math]-го разряда представления числа [math]n[/math] в троичной системе счисления. Заметим, что для построения такого леса можно использовать и избыточные троичные представления.
  • Толстый лес из [math]n[/math] узлов содержит [math]O(n\log{n})[/math] деревьев.


Определение:
Лес будем называть нагруженным, если он состоит из нескольких толстых деревьев, ранги которых не обязательно попарно различны и узлам которых взаимно однозначно поставлены в соответствие элементы взвешенного множества.


Определение:
Узел (англ. Node) в нагруженном лесе назовем неправильным, если его ключ меньше ключа его родителя.


Определение:
Нагруженный лес назовем почти кучеобразным, если для каждого значения [math]k[/math] в нем имеется не более двух неправильных узлов ранга [math]k[/math].


Толстые кучи

Здесь и далее "Толстая куча на избыточном счетчике" будет заменено на более лаконичное "Толстая куча".

Определение:
Толстая куча — это почти кучеобразный нагруженный лес.


Представление толстой кучи

Каждый узел толстой кучи будем представлять записью со следующими полями:

  • [math]key[/math] — ключ элемента, приписанного узлу дерева
  • [math]parent[/math] — указатель на родителя
  • [math]left[/math] — указатель на ближайшего левого брата
  • [math]right[/math] — указатель на ближайшего правого брата
  • [math]lChild[/math] — указатель на самого левого сына
  • [math]rank[/math] — ранг узла.

"Братья" (узлы корневых деревьев, а также сыновья каждого узла) объединены в двусвязный список при помощи указателей [math]left[/math] и [math]right[/math]. У самого левого (правого) "брата" в этом списке указатель [math]left[/math] ([math]right[/math]) равен [math]NULL[/math].

Представление леса списком

Вспомогательные структуры

Нам понадобятся понятия корневого счетчика и счетчика нарушений.

Толстую кучу будем представлять записью следующего вида: [math]fatHeap = (rootCount, countViolation, minpointer, maxRank)[/math], где:

[math]rootCount[/math] — массив, соответствующий корневому счетчику

[math]countViolation[/math] — массив, соответствующий счетчику нарушений

[math]minPointer[/math] — указатель на элемент кучи с минимальным ключом

[math]maxRank[/math]наибольший ранг среди рангов деревьев, присутствующих в куче

Избыточное представление чисел

Определение:
Избыточным [math]b[/math]-арным представлением числа [math]x[/math] будем называть последовательность [math]d = d_n, d_{n-1}, ... d_0[/math], такую что

[math]x = {\sum\limits^{n}_{i = 0} {d_i}}{b^i}[/math]

где [math] d_i \in \{0, 1, ..., b\} [/math], [math] i \in \{0, 1, ..., n\} [/math]


Определение:
Назовем [math]b[/math]-арное избыточное представление числа регулярным, если в нем между любыми двумя цифрами, равными [math]b[/math] , найдется цифра, отличная от [math]b-1[/math].


Определение:
Пусть [math]L(i)[/math] — номер разряда, отличного от [math]b-1[/math] и ближайшего слева от [math]i[/math]-го разряда в регулярном [math]b[/math]-арном избыточном представлении [math]d = d_n, ... d_0[/math].


Определим [math]L'(i)[/math] следующим образом:

  • [math]L'(i) = L(i)[/math] , если [math]d_i \in \{b-1, b-2\}[/math] и [math]d(L(i))=b[/math];
  • [math]L'(i)[/math] — произвольное число [math]\gt i[/math], если [math]d_i \in \{b-1, b-2\}[/math] и [math]d(L(i))\lt b-1[/math];
  • [math]L'(i)[/math] — не определено, если [math]d \notin \{b-1, b-2 \}[/math] .


Величину [math]L'(i)[/math] будем называть прямым указателем.


Фиксация цифры

Фиксацией цифры [math]b[/math], стоящей в [math]i[/math]-м разряде представления [math]d[/math], (fix(i)) назовем операцию, заключающуюся в обнулении цифры [math]d_i[/math] и инкрементировании цифры [math] d_{i+1} [/math], при этом если [math]i=n[/math] , то полагаем [math]d_{i+1} = 1[/math]. При каждом выполнении операции фиксации будем обновлять значение [math]L'(i)[/math]. Очевидно, при [math]b\gt 2[/math] операцию [math]fix(i)[/math] можно выполнить следующим образом:

fix(int i):
  if d[i] == b
    d[i] = 0
    d[i + 1]++
  if d[i + 1] == b - 1:
    L'[i] = L'[i + 1]
  else
    L'[i] = i + 1


Инкремент

Инкрементирование [math]i[/math]-й цифры избыточного представления [math]d[/math] [math]inc(i)[/math] можно выполнить так:

inc(int i):
  fix(i)
  if (d[i] == b - 1) or (d[i] == b - 2)
    fix(L'[i])
  d[i]++
  fix(i)


Декремент

Эта схема может быть расширена для выполнения за константное время декрементирования произвольной цифры добавлением дополнительного цифрового значения [math]b+1[/math].


Представление приоритетной очереди основано на использовании так называемых избыточных счетчиков, позволяющих за время [math]O(1)[/math] инкрементировать любой разряд. Заметим, что использованные здесь счетчики — лишь один из способов реализации толстых куч. На самом деле, для их реализации подойдет произвольный d-арный счетчик, при условии, что трудоемкость инкрементирования любого его разряда является константной.

Корневой счетчик

Корневой счетчик состоит из избыточного троичного представления числа элементов в куче и набора списочных элементов.

Значение его [math]i[/math]-го разряда равно количеству деревьев ранга [math]i[/math], присутствующих в куче. При таком определении избыточного корневого представления число, которое оно представляет, равно числу узлов в куче, так как толстое дерево ранга [math]i[/math] содержит ровно [math]3^i[/math] узлов. Заметим, что состояние избыточного корневого представления определяется неоднозначно. Очевидно, что для любой толстой кучи, состоящей из [math]n[/math] элементов, существует регулярное избыточное представление корневого счетчика. Списочный элемент, приписанный [math]i[/math]-му разряду избыточного корневого представления, — это указатель на список деревьев ранга [math]i[/math], присутствующих в куче, образованный посредством указателей [math]right[/math] корневых узлов связываемых деревьев.

Утверждение (о корневом счетчике):
Из определения корневого счетчика следует:
  • Корневой счетчик позволяет иметь доступ к корню любого дерева ранга [math]i[/math] за время [math]O(1)[/math].
  • Вставка толстого дерева ранга [math]i[/math] соответствует операции инкрементирования [math]i[/math]-го разряда корневого счетчика.
  • Удаление толстого поддерева ранга [math]i[/math] соответствует операции декрементирования [math]i[/math]-го разряда корневого счетчика.
  • Операции инкрементирования и декрементирования [math]i[/math]-го разряда корневого счетчика осуществляются за время [math]O(1)[/math].

Корневой счетчик представляем расширяющимся массивом [math]rootCount[/math] , каждый элемент которого — запись с тремя полями:

  • [math]rootCount[i].Value[/math][math]i[/math]-й разряд равный количеству деревьев ранга [math]i[/math].
  • [math]rootCount[i].forwardPointer[/math] — прямой указатель [math]i[/math]-го разряда.
  • [math]rootCount[i].listPointer[/math] — указатель на список деревьев ранга [math]i[/math], присутствующих в толстой куче. Деревья в этом списке связаны при помощи указателя [math]Right[/math] корневых узлов связываемых деревьев. Если в куче нет деревьев ранга [math]i[/math] , то указатель [math]listPointer[/math] равен [math]NULL[/math].

Заметим, что если значение равно нулю, то нам неважно значение указателя [math]rootCount[i].listPointer[/math].

Инициализация

Чтобы время инициализации счетчиков было [math]O(1)[/math], используем поразрядную их инициализацию. То есть будем добавлять новые разряды только тогда, когда возникает такая необходимость, и при этом инициализировать новый разряд сразу в обоих счетчиках. Для этого мы вводим переменную [math]maxRank[/math], которая показывает нам, какая часть массивов счетчиков используется в данный момент.

При начальной инициализации необходимо установить счетчики в состояние, которое отвечает пустой куче. Очевидно, что в пустой куче не может быть никаких нарушений.

Обновление прямого указателя

Обновление прямого указателя [math]i[/math]-го разряда корневого счетчика заключается в выполнении следующего псевдокода:

updateForwardPionter(int i):
  if rootCount[i + 1].Value == 3 - 1
    rootCount[i].forwardPointer = rootCount[i + 1].forwardPointer
  else
    rootCount[i].forwardPointer = i + 1


Корректировка при вставке

Корректировка списочной части [math]i[/math]-го разряда корневого счетчика при вставке в кучу нового дерева ранга [math]i~(insertTree(i,p))[/math]. Эта процедура вставляет новое дерево ранга [math]i[/math] (на него указывает указатель [math]p[/math]) в списочную часть [math]i[/math]-го разряда корневого счетчика [math]rootCount[/math] выглядит так:

insertTree(i, p):
  p1 = rootCount[i].listPointer
  if rootCount[i].Value [math] \ne [/math] 0
    p.right = p1
  else
    p.right = NULL
  p.left = NULL
  rootCount[i].listPointer = p


Корректировка при удалении

Корректировка списочной части [math]i[/math]-го разряда корневого счетчика при удалении из кучи дерева ранга [math]i~(deleteTree(i,p))[/math]. Эта процедура удаляет дерево ранга [math]i[/math] (на него указывает указатель [math]p[/math]) из списочной части [math]i[/math]-го разряда корневого счетчика [math]rootCount[/math] . Будем считать, что указанное дерево присутствует в куче. Процедура заключается в выполнении следующего псевдокода:

deleteTree(i, p):
  p1 = rootCount[i].listPointer
  if p1 == p
    rootCount[i].listPointer = p.right
  j = 1
  while (j [math] \le [/math] rootCount[i].Value) and (p1.right [math] \ne [/math] p):
    j++
    p1 = p1.right
  p1.right = p.right


Связывание трех деревьев в одно

Связывание [math](fastening (p1, p2, p3))[/math] трех толстых деревьев ранга [math]i[/math] в одно толстое дерево ранга [math]i+1[/math]. Эта функция принимает три указателя [math](p1, p2 ,p3)[/math] на три разных толстых дерева одного и того же ранга [math]i[/math] и возвращает указатель на вновь сформированное дерево ранга [math]i+1[/math] . Процедура заключается в выполнении следующего псевдокода:

fastening (p1, p2, p3):
  if (p1.key [math] \le [/math] p2.key) and (p1.Key [math] \le [/math] p3.key)
    minP = p1
    p1 = p2
    p2 = p3
  if (p2.key [math] \le [/math] p1.key) and (p2.key [math] \le [/math] p3.key)
    minP = p2
    p1 = p1
    p2 = p3
  if (p3.key [math] \le [/math] p1.key) and (p3.key [math] \le [/math] p2.key)
    minP = p3
    p1 = p1
    p2 = p2
  p1.right = p2
  p1.left = NULL
  p1.parent = minP
  p2.right = minP.lChild
  p2.left = p1
  p2.parent = minP
  if minP.lChild [math] \ne [/math] NULL
    minP.lChild.left = p2
  minP.lChild = p1
  minP.rank = minP.rank + 1
  minP.right = NULL
  minP.left = NULL
  return minP

Значение ключа элемента по указателю

Функция [math]getKey(p)[/math] по указателю p на элемент определяет значение его ключа:

// под [math]\infty[/math] нужно понимать нейтральный относительно минимума элемент.
getKey(p):
  if p == NULL
    min = [math]\infty[/math]
  else
    min = p.key
  return min 

Узел с минимальным ключом

Функция [math]minKeyNodeRoot(p)[/math], которая по указателю [math]p[/math] на списочную часть разряда корневого счетчика возвращает указатель на корневой узел с минимальным ключом:

minKeyNodeRoot(p):
  p1 = p
  minP = p1
  while p1 [math] \ne [/math] NULL
    if p1.key < minP.key
      minP = p1
      p1 = p1.right
  return minP

Операция фиксации [math]rmFixRootCount(i)[/math]

Операция фиксации [math]i[/math]-го разряда корневого счетчика подразумевает, что его значение равно трем, а списочная часть содержит указатель на список деревьев ранга [math]i[/math], состоящий ровно из трех деревьев. При выполнении этой операции значение в [math]i[/math]-м разряде — должно стать равным нулю, а значение в [math]i[/math]-м разряде увеличиться на единицу. То есть в куче не должно остаться деревьев ранга [math]i[/math], а количество деревьев ранга [math]i+1[/math] должно увеличиться на единицу. Для этого следует удалить из кучи три присутствующих в ней дерева ранга [math]i[/math] , связать их в дерево ранга [math]i+1[/math] и вставить вновь полученное дерево в кучу. Следует учесть, что ранг нового дерева может стать больше, чем [math]maxRank[/math], что потребует инициализации нового разряда. Для этого необходимо увеличить значение [math]maxRank[/math] на единицу и заполнить новое поле, а также провести инициализацию нового разряда.

rmFixRootCount(i)
  if maxRank == i
    maxRank = i + 1
    rootCount[i + 1].Value = 0
    countViolation[i + 1].Value = 0
  else
    updateForwardPointer(i + 1)
  rootCount[i].Value = 0
  p1 = rootCount[i].listPointer
  p2 = p1.right
  p3 = p2.right
  p = fastening(p1, p2, p3)
  rootCount[i].listPointer = NULL
  insertTree(i + 1, p)
  rootCount[i + 1].Value = rootCount[i + 1].Value + 1 

Инкрементирование i-го разряда корневого счетчика

По сравнению с описанным алгоритмом инкрементирования [math]i[/math]-го разряда избыточного представления здесь мы должны учесть работу со списочной частью и обновить прямые указатели.

rmIncRootCount(i,p)
  if (rootCount[i].Value == 1) or (rootCount[i].Value == 2)
    if rootCount[rootCount[i].forwardPointer].Value == 3
      fixRootCount(rootCount[i].forwardPointer);
  if rootCount[i].Value == 3
    fixRootCount(i)
  insertTree(i, p)
  rootCount[i].Value = rootCount[i].Value + 1
  updateForwardPointer(i)
  if rootCount[i].Value == 3
    fixRootCount(i)

Удаление дерева из кучи

Процедура удаления дерева из кучи подразумевает наличие в куче этого дерева. Пусть удаляемое дерево имеет ранг [math]i[/math] . Тогда значение [math]i[/math]-го разряда избыточного корневого представления не равно нулю. То есть уменьшение этого значения на единицу не испортит регулярности представления и не потребует обновления каких-либо указателей. Необходимо лишь соответствующим образом обработать списочную часть.

delete(i, p):
  deleteTree(i, p)
  rootCount[i].Value = rootCount[i].Value - 1

Нахождение дерева с минимальным ключом в корне ([math]minKey()[/math])

minKey()
  minP = NULL
  for i = 0 to maxRank:
    p1 = minKeyNodeRoot(rootCount[i].listPointer)
    if getKey(p1) < getKey(minP):
      minP = p1
  return minP

Счетчик нарушений

Заметим, что счетчик нарушений очень похож на корневой счетчик выше, но в отличие от второго:

  • Нас теперь интересует не само число, а только значения разрядов.
  • Операция фиксации тесно связана с толстой кучей.

Значение [math]i[/math]-го разряда для счетчика нарушений интерпретируется как количество неправильных узлов ранга [math]i[/math] , а его списочная часть — это указатели на неправильные узлы ранга [math]i[/math] .

Счетчик нарушений состоит из расширенного избыточного двоичного представления и набора списочных элементов.

Счетчик нарушений представлен саморасширяющимся массивом, элементы которого состоят из четырех полей:

  • [math]countViolation[i].Value[/math] — количество неправильных узлов ранга [math]i[/math] в куче.
  • [math]countViolation[i].forvardPointer[/math] — прямой указатель [math]i[/math]-го разряда
  • [math]countViolation[i].firstViolation[/math] — указатель на неправильный узел ранга [math]i[/math]
  • [math]countViolation[i].secondViolation[/math] — указатель на неправильный узел ранга [math]i[/math]


Утверждение (о счетчике нарушений):
из определения счетчика нарушений следует:
  • Наличие счетчика нарушений позволяет иметь доступ к любому неправильному узлу ранга [math]i[/math] за время [math]O(1)[/math] .
  • Уменьшение ключа у элемента ранга [math]i[/math] соответствует операции инкрементирования [math]i[/math]-го разряда счетчика нарушений (естественно, лишь в случае, когда новое значение ключа у изменяемого узла становится меньше значения ключа его родителя).
  • Операции инкрементирования и декрементирования [math]i[/math]-го разряда осуществляются за время [math]O(1)[/math].

Для инициализации нового звена в счетчике нарушений необходимо лишь занулить его значение в новом разряде. Делается это только тогда, когда мы вводим в кучу новое дерево ранга [math]maxRank + 1[/math]. Это первый момент появления в куче узла ранга [math]maxRank + 1[/math]. Для тех нарушений, которые могут возникнуть в узлах ранга меньше либо равного [math]maxRank + 1[/math], соответствующие разряды счетчика нарушений уже инициализированы, а узлов большего ранга в куче пока нет.

Основные операции

  • [math]makeHeap[/math][math]O(1)[/math]

Заключается в инициализации счетчиков.

  • [math]findMin[/math][math]O(1)[/math]

Возвращает указатель на минимальный элемент.

  • [math]insert(key)[/math][math]O(1)[/math]

Чтобы выполнить эту операцию, делаем новый элемент отдельным деревом и выполняем процедуру вставки нового элемента ранга [math]0[/math] в корневой счетчик. После этого, если необходимо, корректируем значение указателя на минимальный элемент.

  • [math]decreaseKey[/math][math]O(1)[/math]

Чтобы выполнить эту операцию, поступим следующим образом. Пусть [math]x[/math] — узел, на который указывает указатель [math]p[/math] . Вычитаем [math]\delta[/math] из ключа узла [math]x[/math] . Если новый ключ [math]x[/math] меньше минимального ключа кучи [math]H[/math], обмениваем ключ элемента [math]p[/math] с ключом минимального элемента. Новых нарушений операция не создаст. Пусть [math]r[/math] — ранг [math]x[/math] . Если [math]x[/math] — нарушаемый узел, добавляем [math]x[/math] как новое [math]r[/math]-ранговое нарушение инкрементированием [math]r[/math]-й цифры [math]d_r[/math] счетчика нарушений.

  • [math]deleteMin[/math][math]O(\log(n))[/math]

Удаляем поддерево с корнем в минимальном узле из леса. Минимальность этого элемента гарантирует нам, что среди его детей нарушений порядка кучи не было. То есть нет необходимости работать со счетчиком нарушений. Затем вставляем в кучу все деревья с корнями, расположенными в детях удаляемого узла. Очевидно, что новый минимальный ключ — либо в корне дерева леса, либо в нарушенном узле. Выполняем поиск нового минимального элемента среди корней деревьев и нарушенных узлов. Если минимальный элемент оказался в нарушенном узле, то обмениваем его с элементом, хранимым в корне этого дерева, корректируя корневой счетчик, если это необходимо. После замены новый минимум — в корне дерева леса. Этот корень будет новым минимальным узлом.

  • [math]delete[/math][math]O(\log(n))[/math]

Выполняем [math]decreaseKey[/math] а затем [math]deleteMin[/math].

  • [math]meld(h1, h2)[/math][math]O(\log(n))[/math]

Первый шаг — фиксируются все нарушения в куче с меньшим максимальным рангом (разрывая связь произвольно). Не уменьшая общности, считаем, что эта куча — [math]р2[/math] . Пройти по счетчику нарушений [math]p2[/math] от младшей цифры к старшей, пропуская цифры со значением [math]0[/math] . Для [math]i[/math]-й цифры [math]d_i != 0[/math] делаем операцию фиксирования на каждой цифре, показываемой прямым указателем [math]d_i[/math] , если эта цифра имеет значение 2. Затем, если [math]d_i = 2[/math] , фиксируем [math]d_i[/math] . Если [math]d_i = 1[/math] , преобразуем это [math]i[/math]-ранговое нарушение в [math](i+1)[/math]-ранговое нарушение, как при фиксировании, используя [math]i[/math]-рангового брата нарушенного узла вместо (несуществующего) другого [math]i[/math] -рангового нарушения. Как только [math]h2[/math] не будет содержать каких-либо нарушений, нужно вставить корни из корневого счетчика [math]h2[/math] в корневой счетчик [math]h1[/math] инкрементированием соответствующих цифр. Если минимальный узел [math]h2[/math] содержит меньший ключ, чем минимальный узел [math]h1[/math] , следует установить новым минимальным узлом [math]h1[/math] минимальный узел [math]h2[/math] . Затем нужно вернуть модифицированную кучу [math]h1[/math] в качестве результата [math]meld[/math] .

  • [math]deleteViolation[/math]

Для освобождения кучи от нарушений достаточно выполнить следующий псевдокод:

deleteViolation(h2):
  for i = 0 to h2.maxRank
  if countViolation[i].Value == 2
    fixCountViolation(i)
  for i = 0 to h2.maxRank
    if countViolation[i].Value == 1
      incCountViolation(i, searchBrother(countViolation[i].rmFirstviolation))
      fixCountViolation(i)

Источники