Толстая куча на избыточном счётчике

Материал из Викиконспекты
Версия от 13:40, 26 мая 2013; Slavian (обсуждение | вклад) (Связывание трех деревьев в одно)
Перейти к: навигация, поиск

Толстое дерево

Определение:
Определяем толстое дерево [math]F_k[/math] ранга [math]k[/math], [math]k = 0, 1, 2, \dots [/math] следующим образом:
  • Толстое дерево [math]F_0[/math] ранга ноль состоит из единственного узла.
  • Толстое дерево [math]F_k[/math] ранга [math]k[/math], для [math]k = 1, 2, 3,\dots [/math], состоит из трех деревьев [math]F_{k-1}[/math] ранга [math]k[/math],таких, что корни двух из них являются самыми левыми потомками корня третьего.
Ранг узла [math]x[/math] в толстом дереве определяется как ранг толстого поддерева с корнем в узле [math]x[/math].
Пример толстых деревьев [math]F_0, F_1, F_2, F_3[/math]


Утверждение:
Свойства толстых деревьев:
  • В толстом дереве ранга [math]k[/math] ровно [math]3^k[/math] узлов.
  • Для любого натурального числа [math]n[/math] существует лес из толстых деревьев, в котором ровно [math]n[/math] узлов. Такой лес можно построить, включив в него столько деревьев ранга [math]i[/math], каково значение [math]i[/math]-го разряда представления числа [math]n[/math] в троичной системе счисления. Заметим, что для построения такого леса можно использовать и избыточные троичные представления.
  • Толстый лес из [math]n[/math] узлов содержит [math]O(n\log(n))[/math] деревьев.


Определение:
лес будем называть нагруженным, если он состоит из нескольких толстых деревьев, ранги которых не обязательно попарно различны и узлам которых взаимно однозначно поставлены в соответствие элементы взвешенного множества.


Определение:
Узел в нагруженном лесе назовем неправильным, если его ключ меньше ключа его родителя.


Определение:
Нагруженный лес назовем почти кучеобразным, если для каждого значения [math]k[/math] в нем имеется не более двух неправильных узлов ранга [math]k[/math].


Толстые кучи

Определение:
Толстая куча — это почти кучеобразный нагруженный лес.


Представление толстой кучи

Каждый узел толстой кучи будем представлять записью со следующими полями:

  • [math]Key[/math] — ключ элемента, приписанного узлу дерева
  • [math]Parent[/math] — указатель на родителя
  • [math]Lest[/math] — указатель на ближайшего левого брата
  • [math]Right[/math] — указатель на ближайшего правого брата
  • [math]LChild[/math] — указатель на самого левого сына
  • [math]Rank[/math] — ранг узла.

"Братья" связаны в двусвязный список при помощи указателей [math]Left[/math] и [math]Right[/math]. У самого левого (правого) "брата" в этом списке указатель [math]Left[/math] ([math]Right[/math]) равен [math]NULL[/math].

Пример толстого дерева [math]F_0, F_1, F_2, F_3[/math]

Вспомогательные структуры

Нам понадобятся понятия корневого счетчика и счетчика нарушений.

Толстую кучу будем представлять записью следующего вида: [math]FatHeap = (RootCount, CountViolation, Minpointer, MaxRank)[/math], где:

[math]RootCount[/math] — массив, соответствующий корневому счетчику

[math]CountViolation[/math] — массив, соответствующий счетчику нарушений

[math]MinPointer[/math] — указатель на элемент кучи с минимальным ключом

[math]MaxRank[/math]наибольший ранг среди рангов деревьев, присутствующих в куче

Избыточное представление чисел

Определение:
Избыточным [math]b[/math]-арным представлением числа [math]x[/math] будем называть последовательность [math]d = d_n, d_{n-1}, ... d_0[/math], такую что

[math]x = {\sum\limits^{n}_{i = 0} {d_i}}{b^i}[/math]

где [math] d_i \in \{0, 1, ..., b\} [/math], [math] i \in \{0, 1, ..., n\} [/math]


Определение:
Назовем [math]b[/math]-арное избыточное представление числа регулярным, если в нем между любыми двумя цифрами, равными [math]b[/math] , найдется цифра, отличная от [math]b-1[/math].


Определение:
Пусть [math]L(i)[/math] — номер разряда, отличного от [math]b-1[/math] и ближайшего слева от [math]i[/math]-го разряда в регулярном [math]b[/math]-арном избыточном представлении [math]d = d_n, ... d_0[/math].


Определим [math]L'(i)[/math] следующим образом:

  • [math]L'(i) = L(i)[/math] , если [math]d_i \in \{b-1, b-2\}[/math] и [math]d(L(i))=b[/math];
  • [math]L'(i)[/math] — произвольное число [math]\gt i[/math], если [math]d_i \in \{b-1, b-2\}[/math] и [math]d(L(i))\lt b-1[/math];
  • [math]L'(i)[/math] — не определено, если [math]d \notin \{b-1, b-2 \}[/math] .


Величину [math]L'(i)[/math] будем называть прямым указателем.


фиксация цифры

Фиксацией цифры [math]b[/math], стоящей в [math]i[/math]-м разряде представления [math]d[/math], (Fix(i)) назовем операцию, заключающуюся в обнулении цифры [math]d_i[/math] и инкрементировании цифры [math]d_{i+1}[/math], при этом если [math]i=n[/math] , то полагаем d_{i+1} = 1. При каждом выполнении операции фиксации будем обновлять значение [math]L'(i)[/math]. Очевидно, при [math]b\gt 2[/math] операцию [math]Fix(i)[/math] можно выполнить следующим образом:

Fix(i)
 if(d[i] == b)
     d[i] = 0;
     d[i + 1]++; 
 if(d[i + 1] == b - 1)
     L'[i] = L'(i + 1)
 else
     L'[i] = i + 1;

инкремент

Инкрементирование [math]i[/math]-й цифры избыточного представления [math]d[/math] [math]Inc(i)[/math] можно выполнить так:

Inc(i)
 Fix(i);
 if (d[i] == b - 1) or (d[i] == b - 2)
     Fix(L'[i]);
 d[i]++;
 Fix(i);

Корневой счетчик

Корневой счетчик состоит из избыточного троичного представления числа элементов в куче и набора списочных элементов.

Значение его [math]i[/math]-го разряда равно количеству деревьев ранга [math]i[/math], присутствующих в куче. При таком определении избыточного корневого представления число, которое оно представляет, равно числу узлов в куче, так как толстое дерево ранга [math]i[/math] содержит ровно [math]3^i[/math] узлов. Заметим, что состояние избыточного корневого представления определяется неоднозначно. Очевидно, что для любой толстой кучи, состоящей из [math]n[/math] элементов, существует регулярное избыточное представление корневого счетчика. Списочный элемент, приписанный [math]i[/math]-му разряду избыточного корневого представления, — это указатель на список деревьев ранга [math]i[/math], присутствующих в куче, образованный посредством указателей [math]Right[/math] корневых узлов связываемых деревьев.

Утверждение (о корневом счетчике):
Из определения корневого счетчика следует:
  • Корневой счетчик позволяет иметь доступ к корню любого дерева ранга [math]i[/math] за время [math]O(1)[/math].
  • Вставка толстого дерева ранга [math]i[/math] соответствует операции инкрементирования [math]i[/math]-го разряда корневого счетчика.
  • Удаление толстого поддерева ранга [math]i[/math] соответствует операции декрементирования [math]i[/math]-го разряда корневого счетчика.
  • Операции инкрементирования и декрементирования [math]i[/math]-го разряда корневого счетчика осуществляются за время [math]O(1)[/math].

корневой счетчик представляем расширяющимся массивом [math]RootCount[/math] , каждый элемент которого — запись с тремя полями:

  • [math]RootCount[i].Value[/math][math]i[/math]-й разряд равный количеству деревьев ранга [math]i[/math].
  • [math]RootCount[i].ForvardPointer[/math] — прямой указатель [math]i[/math]-го разряда.
  • [math]RootCount[i].ListPointer[/math] — указатель на список деревьев ранга [math]i[/math], присутствующих в толстой куче. Деревья в этом списке связаны при помощи указателя [math]Right[/math] корневых узлов связываемых деревьев. Если в куче нет деревьев ранга [math]i[/math] , то указатель [math]ListPointer[/math] равен NULL.

Заметим, что если значение равно нулю, то нам неважно значение указателя [math]RootCount[i].ListPointer[/math].

Инициализация

Чтобы время инициализации счетчиков было [math]O(1)[/math], используем поразрядную их инициализацию. То есть будем добавлять новые разряды только тогда, когда возникает такая необходимость, и при этом инициализировать новый разряд сразу в обоих счетчиках. Для этого мы вводим переменную [math]MaxRank[/math], которая показывает нам, какая часть массивов счетчиков используется в данный момент.

При начальной инициализации необходимо установить счетчики в состояние, которое отвечает пустой куче. Очевидно, что в пустой куче не может быть никаких нарушений.

Обновление прямого указателя

Обновление прямого указателя i-го разряда корневого счетчика заключается в выполнении следующего псевдокода:

UpdateForwardPionter(i)
 if RootCount[i + 1].Value == 3 - 1
     RootCount[i].ForwardPointer = RootCount[i + 1].ForwardPointer;
 else
     RootCount[i].ForwardPointer = i + 1;

Корректировка при вставке

Корректировка списочной части [math]i[/math]-го разряда корневого счетчика при вставке в кучу нового дерева ранга [math]i[/math] ([math]InsertTree(i,p)[/math]). Эта процедура вставляет новое дерево ранга [math]i[/math] (на него указывает указатель [math]p[/math]) в списочную часть [math]i[/math] -го разряда корневого счетчика [math]RootCount[/math] выглядит так:

InsertTree(i, p)
 p1 = RootCount[i].ListPointer;
 if RootCount[i].Value != 0
     p.Right = p1;
 else
     p.Right = NULL;
 p.Left = NULL;
 RootCount[i].ListPointer = p;

Корректировка при удалении

Корректировка списочной части [math]i[/math]-го разряда корневого счетчика при удалении из кучи дерева ранга [math]i[/math] ([math]DeleteTree(i,p)[/math]). Эта процедура удаляет дерево ранга [math]i[/math] (на него указывает указатель [math]p[/math]) из списочной части [math]i[/math]-го разряда корневого счетчика [math]RootCount[/math] . Будем считать, что указанное дерево присутствует в куче. Процедура заключается в выполнении следующего псевдокода:

DeleteTree(i, p)
 p1 = RootCount[i].ListPointer;
 if(p1 == p)
     RootCount[i].ListPointer = p.Right;
 j = 1;
 while(j <= RootCount[i].Value) and (p1.Right != p) do
     p1.Right = p.Right;

Связывание трех деревьев в одно

Связывание [math](Fastening (p1, p2, p3))[/math] трех толстых деревьев ранга [math]i[/math] в одно толстое дерево ранга [math]i+1[/math]. Эта функция принимает три указателя [math](p1, p2 ,p3)[/math] на три разных толстых дерева одного и того же ранга [math]i[/math] и возвращает указатель на вновь сформированное дерево ранга [math]i+1[/math] . Процедура заключается в выполнении следующего псевдокода:

Fastening (p1, p2, p3)
 if(p1.Key <= p2.Key) and (p1.Key <= p3.Key)
     MinP = p1;
     p1 = p2;
     p2 = p3;
 if(p2.Key <= p1.Key) and(p2.Key <= p3.Key)
     MinP = p2;
     p1 = p1;
     p2 = p3;
 if(p3.Key <= p1.Key) and(p3.Key <= p2.Key)
     MinP = p3;
     p1 = p1;
     p2 = p2;
 p1.Right = p2;
 p1.Left = NULL;
 p1.Parent = MinP;
 p2.Right = MinP.LChild;
 p2.Left = p1;
 p2.Parent = MinP;
 if(MinP.LChild != NULL)
     MinP.LChild.Left = p2;
 MinP.LChild = p1;
 MinP.Rank = MinP.Rank + 1;
 MinP.Right = NULL;
 MinP.Left = NULL;
 Fastening = MinP; 

Значение ключа элемента по указателю

Функция [math]GetKey(p)[/math] по указателю p на элемент определяет значение его ключа:

if(p = NULL)
    Min := [math]\infty[/math];
else
    Min := p.key;
GetKey := Min; 

Узел с минимальным ключом

Функция [math]MinKeyNodeRoot(p)[/math], которая по указателю [math]p[/math] на списочную часть разряда корневого счетчика возвращает указатель на корневой узел с минимальным ключом:

p1:=p;
MinP := p1;
while (p1 != NULL) do
    if(p1.Key < MinP.Key)
        MinP := p1;
        p1 := p1.Right;
MinKeyNodeRoot := MinP;

Операция фиксации [math]rmFixRootCount(i)[/math]

Операция фиксации [math]i[/math]-го разряда корневого счетчика подразумевает, что его значение равно трем, а списочная часть содержит указатель на список деревьев ранга [math]i[/math], состоящий ровно из трех деревьев. При выполнении этой операции значение в [math]i[/math]-м разряде — должно стать равным нулю, а значение в [math]i[/math]-м разряде увеличиться на единицу. То есть в куче не должно остаться деревьев ранга [math]i[/math], а количество деревьев ранга [math]i+1[/math] должно увеличиться на единицу. Для этого следует удалить из кучи три присутствующих в ней дерева ранга [math]i[/math] , связать их в дерево ранга [math]i+1[/math] и вставить вновь полученное дерево в кучу. Следует учесть, что ранг нового дерева может стать больше, чем [math]MaxRank[/math], что потребует инициализации нового разряда. Для этого необходимо увеличить значение [math]MaxRank[/math] на единицу и заполнить новое поле, а также провести инициализацию нового разряда.

if(MaxRank = i)
    maxRank := i + 1;
    RootCount[i+1].Value := 0;
    CountViolation[i+1].Value := 0;
else
    UpdateForwardPointer(i+1);
RootCount[i].Value := 0;
p1 := RootCount[i].ListPointer;
p2 := p1.Right;
p3 := p2.Right;
p := Fastening(p1, p2, p3);
RootCount[i].ListPointer := NULL;
InsertTree(i+1, p);
RootCount[i+1].Value := RootCount[i+1].Value + 1;  

Инкрементирование i-го разряда корневого счетчика [math]rm IncRootCount(i,p)[/math]

Здесь мы должны учесть работу со списочной частью и обновить прямые указатели.

if(RootCount[i].Value = 1) or (RootCount[i].Value = 2)
    if(RootCount[Rootcount[i].ForwardPointer)
if(RootCount[i].Value = 3)
    FixRootCount(i);
InsertTree(i,p);
RootCount[i].Value := RootCount[i].Value + 1;
UpdateForwardPointer(i);
if(rootcount[i].Value = 3)
    FixRootCount(i);

удаление дерева из кучи

Процедура удаления дерева из кучи подразумевает наличие в куче этого дерева. Пусть удаляемое дерево имеет ранг . Тогда значение -го разряда избыточного корневого представления не равно нулю. То есть уменьшение этого значения на единицу не испортит регулярности представления и не потребует обновления каких-либо указателей. Необходимо лишь соответствующим образом обработать списочную часть.

DeleteTree(i,p);
RootCount[i].Value := RootCount[i].Value -1;

Нахождение дерева с минимальным ключом в корне ([math]MinKey[/math])

MinP := NULL;
for(i := 0 to MaxRank) do
    p1:=MinKeyNodeRoot(RootCount[i].ListPointer);
    if(GetKey(p1)<GetKey(MinP))
        MinP := p1;
MinKey := MinP;

Счетчик нарушений

Заметим, что счетчик нарушений очень похож на корневой счетчик выше, но в отличие от второго:

  • Нас теперь интересует не само число, а только значения разрядов.
  • Операция фиксации тесно связана с толстой кучей.

Значение [math]i[/math]-го разряда для счетчика нарушений интерпретируется как количество неправильных узлов ранга [math]i[/math] , а его списочная часть — это указатели на неправильные узлы ранга [math]i[/math] .

Счетчик нарушений состоит из расширенного избыточного двоичного представления и набора списочных элементов.

Счетчик нарушений представлен Саморасширяющимся массивом, элементы которого состоят из четырех полей:

  • [math]CountViolation[i].Value[/math] — количество неправильных узлов ранга [math]i[/math] в куче.
  • [math]CountViolation[i].ForvardPointer[/math] — прямой указатель [math]i[/math]-го разряда
  • [math]CountViolation[i].FirstViolation[/math] — указатель на неправильный узел ранга [math]i[/math]
  • [math]CountViolation[i].SecondViolation[/math] — указатель на неправильный узел ранга [math]i[/math]


Утверждение (о счетчике нарушений):
из определения счетчика нарушений следует:
  • Наличие счетчика нарушений позволяет иметь доступ к любому неправильному узлу ранга [math]i[/math] за время [math]O(1)[/math] .
  • Уменьшение ключа у элемента ранга [math]i[/math] соответствует операции инкрементирования [math]i[/math]-го разряда счетчика нарушений (естественно, лишь в случае, когда новое значение ключа у изменяемого узла становится меньше значения ключа его родителя).
  • Операции инкрементирования и декрементирования [math]i[/math]-го разряда осуществляются за время [math]O(1)[/math].

Для инициализации нового звена в счетчике нарушений необходимо лишь занулить его значение в новом разряде. Делается это только тогда, когда мы вводим в кучу новое дерево ранга [math]MaxRank + 1[/math]. Это первый момент появления в куче узла ранга [math]MaxRank + 1[/math]. Для тех нарушений, которые могут возникнуть в узлах ранга меньше либо равного [math]MaxRank + 1[/math], соответствующие разряды счетчика нарушений уже инициализированы, а узлов большего ранга в куче пока нет.

Основные операции

  • [math]MakeHeap[/math][math]O(1)[/math]

заключается в инициализации счетчиков.

  • [math]FindMin[/math][math]O(1)[/math]

возвращает указатель на минимальный элемент.

  • [math]Insert(key)[/math][math]O(1)[/math]

Чтобы выполнить эту операцию, делаем новый элемент отдельным деревом и выполняем процедуру вставки нового элемента ранга [math]0[/math] в корневой счетчик. После этого, если необходимо, корректируем значение указателя на минимальный элемент.

  • [math]DecreaseKey[/math][math]O(1)[/math]

Чтобы выполнить эту операцию, поступим следующим образом. Пусть [math]x[/math] — узел, на который указывает указатель [math]p[/math] . Вычитаем [math]\delta[/math] из ключа узла [math]x[/math] . Если новый ключ [math]x[/math] меньше минимального ключа кучи [math]H[/math], обмениваем ключ элемента [math]p[/math] с ключом минимального элемента. Новых нарушений операция не создаст. Пусть [math]r[/math] — ранг [math]x[/math] . Если [math]x[/math] — нарушаемый узел, добавляем [math]x[/math] как новое [math]r[/math]-ранговое нарушение инкрементированием [math]r[/math]-й цифры [math]d_r[/math] счетчика нарушений.

  • [math]DeleteMin[/math][math]O(\log(n))[/math]

Удаляем поддерево с корнем в минимальном узле из леса. Минимальность этого элемента гарантирует нам, что среди его детей нарушений порядка кучи не было. То есть нет необходимости работать со счетчиком нарушений. Затем вставляем в кучу все деревья с корнями, расположенными в детях удаляемого узла. Очевидно, что новый минимальный ключ — либо в корне дерева леса, либо в нарушенном узле. Выполняем поиск нового минимального элемента среди корней деревьев и нарушенных узлов. Если минимальный элемент оказался в нарушенном узле, то обмениваем его с элементом, хранимым в корне этого дерева, корректируя корневой счетчик, если это необходимо. После замены новый минимум — в корне дерева леса. Этот корень будет новым минимальным узлом.

  • [math]Delete[/math][math]O(\log(n))[/math]

выполняем [math]DecreaseKey[/math] а затем [math]DeleteMin[/math]

  • [math]Meld(h1, h2)[/math][math]O(\log(n))[/math]

Первый шаг — фиксируются все нарушения в куче с меньшим максимальным рангом (разрывая связь произвольно). Не уменьшая общности, считаем, что эта куча — [math]р2[/math] . Пройти по счетчику нарушений [math]p2[/math] от младшей цифры к старшей, пропуская цифры со значением [math]0[/math] . Для [math]i[/math]-й цифры [math]d_i != 0[/math] делаем операцию фиксирования на каждой цифре, показываемой прямым указателем [math]d_i[/math] , если эта цифра имеет значение 2. Затем, если [math]d_i = 2[/math] , фиксируем [math]d_i[/math] . Если [math]d_i = 1[/math] , преобразуем это [math]i[/math]-ранговое нарушение в [math](i+1)[/math]-ранговое нарушение, как при фиксировании, используя [math]i[/math]-рангового брата нарушенного узла вместо (несуществующего) другого [math]i[/math] -рангового нарушения. Как только [math]h2[/math] не будет содержать каких-либо нарушений, нужно вставить корни из корневого счетчика [math]h2[/math] в корневой счетчик [math]h1[/math] инкрементированием соответствующих цифр. Если минимальный узел [math]h2[/math] содержит меньший ключ, чем минимальный узел [math]h1[/math] , следует установить новым минимальным узлом [math]h1[/math] минимальный узел [math]h2[/math] . Затем нужно вернуть модифицированную кучу [math]h1[/math] в качестве результата [math]Meld[/math] .

  • [math]DeleteViolation[/math]

для освобождения кучи от нарушений достаточно выполнить следующий псевдокод:

for i:=0 to h2.MaxRank do
if (CountViolation[i].Value = 2)
    FixCountViolation(i);
for i:=0 to h2.MaxRank do 
    if(CountViolation[i].Value = 1)
        IncCountViolation(i, SearchBrother(CountViolation[i].rmFirstviolation));
        FixCountViolation(i);



Источники