Топологические векторные пространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(тут нужен кто-то адекватный, чтобы вставить пропуски, а то я запутался)
Строка 6: Строка 6:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны, то есть:
+
'''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
 
* непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \Rightarrow \alpha x \in U(\alpha_0 x_0)$
 
* непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \Rightarrow \alpha x \in U(\alpha_0 x_0)$
 
* непрерывность сложения векторов: $x + y \to x_0 + y_0$, если $x \to x_0$, $y \to y_0$. Означает, что для любой окрестности $U(x_0 + y_0)$ существуют окрестности $U(x_0), U(y_0): \forall x \in U(x_0 \forall y \in U(y_0) \Rightarrow x + y \in U(x_0 + y_0)$.
 
* непрерывность сложения векторов: $x + y \to x_0 + y_0$, если $x \to x_0$, $y \to y_0$. Означает, что для любой окрестности $U(x_0 + y_0)$ существуют окрестности $U(x_0), U(y_0): \forall x \in U(x_0 \forall y \in U(y_0) \Rightarrow x + y \in U(x_0 + y_0)$.
Строка 30: Строка 30:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
$A$ '''радиальное''', если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки.
+
$A$ '''радиальное/поглощающее''', если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки.
 
}}
 
}}
  
Строка 38: Строка 38:
 
}}
 
}}
  
TODO тут какая-то хурма про уравновешенность
+
{{TODO|t= тут какая-то хурма про уравновешенность}}
  
 
{{Теорема
 
{{Теорема
Строка 46: Строка 46:
 
# $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
 
# $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
 
# существует база из радиальных уравновешенных окрестностей нуля
 
# существует база из радиальных уравновешенных окрестностей нуля
# $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$ (TODO: какой сакральный смысл у этого свойства?)
+
# $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$ {{TODO|t= какой сакральный смысл у этого свойства?}}
 
|proof=
 
|proof=
 
В прямую сторону:
 
В прямую сторону:
  
 
# Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
 
# Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$(TODO тут вроде баг в конспекте) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0.
+
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0): |\lambda| \ge 0$({{TODO|t= тут вроде был баг в конспекте, проверьте}}) $x \in W(0) \Rightarrow \lambda x \in U(0) \Leftrightarrow \lambda W(0) \subset U(0) \Rightarrow \bigcup\limits_{|\lambda| < \delta} \lambda W(0) \subset U(0)$, где $\lambda W(0)$ — уравновешено и окрестность 0.
 
#: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$.
 
#: Для радиальности: $\forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \Rightarrow \forall U(0) \exists \delta > 0: |\lambda| < \delta, \lambda x_0 \in U(0)$. $x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta}$, то есть $U(0)$ поглощает $x_0$.
 
# $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$.
 
# $x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \Rightarrow U_1(0) + U_1(0) \subset U(0)$.
Строка 62: Строка 62:
  
 
Непрерывность умножения: пусть $\lambda \to \lambda_0, x \to x_0$, покажем что $\lambda x \to \lambda_0 x_0$. Пусть $\lambda = \lambda_0 + \alpha, \alpha \to 0$, $x = x_0 + u, u \to 0$. Тогда $\lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u)$. Покажем, что вторая скобка стремится к нулю.
 
Непрерывность умножения: пусть $\lambda \to \lambda_0, x \to x_0$, покажем что $\lambda x \to \lambda_0 x_0$. Пусть $\lambda = \lambda_0 + \alpha, \alpha \to 0$, $x = x_0 + u, u \to 0$. Тогда $\lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u)$. Покажем, что вторая скобка стремится к нулю.
TODO дальше ничего что-то не понимаю, запилите кто-нибудь,а?
+
{{TODO|t= дальше ничего что-то не понимаю, запилите кто-нибудь,а?}}
 
}}
 
}}
  
Строка 91: Строка 91:
 
|author=Колмогоров
 
|author=Колмогоров
 
|statement=
 
|statement=
[[Хаусдорфово]] ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. (TODO: к чему это?)
+
[[Хаусдорфово]] ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. ({{TODO|t=: к чему это?)}}
 
|proof=
 
|proof=
 
В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \| x \| \le 1 \}$
 
В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \| x \| \le 1 \}$
  
TODO: далее я что-то не особенно осознал, что происходит(
+
{{TODO|t= далее я что-то не особенно осознал, что происходит(}}
  
В обратную: пусть $V$ — ограниченная выпуклая окрестность нуля. $W$ — радиальная закр. (TODO что значит закр.?) окрестность 0: $W \subset V$, $\mathrm{Cov} W $ — выпуклая оболочка, $V$ — выпуклая, $\mathrm{Cov} W \subset V$, $\mathrm{Cov} W$ — радиальное закр. множество, так как $W$ — такое же. Из ограниченности $V$ следует ограниченность $\mathrm{Cov} W$.
+
В обратную: пусть $V$ — ограниченная выпуклая окрестность нуля. $W$ — радиальная закр. ({{TODO|t= что значит закр.?}}) окрестность 0: $W \subset V$, $\mathrm{Cov} W $ — выпуклая оболочка, $V$ — выпуклая, $\mathrm{Cov} W \subset V$, $\mathrm{Cov} W$ — радиальное закр. множество, так как $W$ — такое же. Из ограниченности $V$ следует ограниченность $\mathrm{Cov} W$.
  
То есть, мы построили $V^* = \mathrm{Cov} W$ — радиальное закр. выпуклую TODO пшшш. $V^* \to p_{V^*}$ — функционал Минковского — полунорма. $V^*$ ограничено, тогда $\{ {1 \over n} V^* \}$ — база окрестностей 0. Так как пространство Хаусдорфово, то $\bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \Rightarrow p_{V^*}(x) = 0 \Rightarrow x = 0$, то есть $p_{V^*}$ — норма, а $\{ {1 \over n} V^*\}$ — база окрестностей нуля, нормируемых функционалом Минковского.
+
То есть, мы построили $V^* = \mathrm{Cov} W$ — радиальное закр. выпуклую {{TODO|t= пшшш.}} $V^* \to p_{V^*}$ — функционал Минковского — полунорма. $V^*$ ограничено, тогда $\{ {1 \over n} V^* \}$ — база окрестностей 0. Так как пространство Хаусдорфово, то $\bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \Rightarrow p_{V^*}(x) = 0 \Rightarrow x = 0$, то есть $p_{V^*}$ — норма, а $\{ {1 \over n} V^*\}$ — база окрестностей нуля, нормируемых функционалом Минковского.
 
}}
 
}}
  

Версия 03:13, 7 января 2013

Эта статья находится в разработке!

<wikitex>

Рассмотрим множество $f: [0, 1] \to \mathbb{R}$. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.


Определение:
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
  • непрерывность умножения на скаляр: $\alpha x \to \alpha_0 x_0$, если $\alpha \to \alpha_0$, $x \to x_0$. Означает, что для любой окрестности $U(\alpha_0 x_0)$ существует $ \varepsilon > 0$ и существует $U(x_0):


В ситуации $f: [0, 1] \to \mathbb{R}$, когда предел определен поточечно, если $\forall 0 \le t_1 < \dots < t_n \le 1, \forall \varepsilon_1 \dots \varepsilon_n > 0$ рассмотреть $U_{t_1 \dots t_n} (\varepsilon_1 \dots \varepsilon _n) = \{ f \mid \forall j: |f(t_j)| < \varepsilon_j \}$, объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.

Как охарактеризовать векторную топологию? Пусть $X$ — линейное пространство, $A, B \subset X$, тогда определим

  • $A + B = \{ a + b \mid a \in A, b \in B\}

$ $\alpha A = \{ \alpha a \mid a \in A \}$ Заметим, что $2 A \subset A + A$, но обратное не верно.


Определение:
$A$ закругленное/уравновешенное, если $\forall \lambda:


Определение:
$A$ поглощает $B$, если $\exists \lambda_0 > 0: \forall \lambda:


Определение:
$A$ радиальное/поглощающее, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки.


Определение:
$A$ выпуклое, если $\forall x, y \in A \forall 0 \le \alpha \le 1: \alpha x + \beta y \in A$, то есть множество содержит отрезок, соединяющий любые два его элемента.


TODO: тут какая-то хурма про уравновешенность

Теорема (характеристика векторной топологии):
$\tau$ — векторная топология на $X$ тогда и только тогда, когда:
  1. $\tau$ инвариантна относительно сдвигов: $\tau + x_0 = \tau$
  2. существует база из радиальных уравновешенных окрестностей нуля
  3. $\forall U(0) \exists U_1(0): U_1(0) + U_1(0) \subset U(0)$
TODO: какой сакральный смысл у этого свойства?
Доказательство:
[math]\triangleright[/math]

В прямую сторону:

  1. Рассмотрим отображение $x \mapsto x + x_0$, то есть сдвиг на $x_0$. Это отображение взаимно однозначно, следовательно непрерывно, то есть если $G \in \tau$ (открыто), $G + x_0$ также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов.
  2. Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. $\lambda x \to 0, x \to 0, \lambda \to 0$, то есть $\forall U(0) \exists \delta > 0, W(0):
[math]\triangleleft[/math]

Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.


Определение:
Пусть $X$ — линейное пространство, $M$ — радиальное подмножество, тогда функционал Минковского $p_{\mu}$ определяется как $p_{\mu}(x) = \inf \{ \lambda > 0 \mid x \in \lambda M\}$.


Заметим, что если $M, N$ — радиальны и $M \subset N$, то $p_N(x) \le p_M(x)$.

Пример:

  • $X$ — НП, $V_1 = \{ x \mid \|x\| < 1\}, p_{V_1}(x) = \|x\|$, сдедовательно, норма — частный случай функционала Минковского.
Утверждение:
Если $M$ — закругленное радиальное выпуклое множество, $p_M(X)$ — полунорма на $X$.
[math]\triangleright[/math]

$p_M(x + y) \le p_M(x) + p_M(y)$

$\exists \lambda > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon$, $p_M(y) < \lambda_2 < p_M(y) + \varepsilon$, $x \in \lambda_1 M, y \in \lambda_2 M \Rightarrow {x \over \lambda_1}, {y \over \lambda_2} \in M$. Рассмотрим $\alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2}$, заметим, что $\alpha + \beta = 1$, из выпуклости получим, что $\alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \Rightarrow {x + y \over \lambda_1 + \lambda_2} \in M \Rightarrow x + y \in (\lambda_1 + \lambda_2) M$, то есть $ p_M(x + y) < \lambda_1 + \lambda_2 < (p_M(x) + p_M(y) + 2 \varepsilon $, сделав предельный переход, получим $p_M(x + y) \le p_M(x) + p_M(y)$.

$p_M(\lambda x) =
[math]\triangleleft[/math]
Теорема (Колмогоров):
Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. ( TODO: : к чему это?)
Доказательство:
[math]\triangleright[/math]
В прямую сторону: если ТВП нормируемо, то $V_r = \{ x : \
[math]\triangleleft[/math]



</wikitex>