Изменения

Перейти к: навигация, поиск

Транзитивный остов

1690 байт добавлено, 21:54, 10 сентября 2018
Доказательство корректности: Если отношение ТОЛЬКО антисимметрично, то граф может иметь цикл
{{Определение
|definition=
'''Транзитивным остовом''' (или '''транзитивным сокращением''', англ. ''transitive reduction'') [[Определение отношения|отношения]] <tex> R </tex> на множестве <tex> X </tex> называется минимальное отношение <tex> R^- </tex> на <tex> X </tex> такое, что [[транзитивное замыкание]] <tex> R^- </tex> равно транзитивному замыканию <tex> R </tex>.
}}
__TOC__
== Алгоритм для антисимметричных отношений ==
===Описание алгоритма===
Пусть первоначально <tex>R^-=R</tex>.
 
Чтобы сделать <tex>R^-</tex> минимальным отношением на <tex>X</tex>, таким, что транзитивное замыкание <tex>R^-</tex> будет равно транзитивному замыканию <tex>R</tex>, рассмотрим всевозможные комбинации из каждых трёх элементов <tex>a, b, c \in X</tex>. Если для этих элементов существует каждое из отношений: <tex>aRb</tex>, <tex>bRc</tex> и <tex>aRc</tex>, {{---}} то исключим отношение <tex>aRc</tex> из <tex>R^-</tex>. После проверки всех комбинаций и исключения ненужных отношений получаем искомое отношение <tex>R^-</tex>.
 
=== Псевдокод ===
'''function''' <tex>f</tex>(<tex>X</tex>: '''List<T>''', <tex>R</tex>: '''List<T>'''):
<tex>R^- = R</tex>
'''foreach''' <tex>a \in X</tex>
'''foreach''' <tex>b \in X</tex>
'''foreach''' <tex>c \in X</tex>
'''if''' <tex>aRb</tex> '''and''' <tex>bRc</tex> '''and''' <tex>aRc</tex>
<tex>R^- = R^-\setminus(a, c)</tex>
 
===Доказательство корректности===
Для удобства представим отношение в виде [[Основные определения теории графов|графа]]: <tex> G = \left < V, E \right > </tex>. Его транзитивным остовом будет граф <tex> G^- = \left < V, E^- \right > </tex>.
Введём несколько обозначений:
* <tex> u \underset{G}{\to} v </tex> {{---}} в графе <tex> G </tex> есть ребро из вершины <tex> u </tex> в <tex> v </tex>,* <tex> u \underset{G}{\leadsto} v </tex> {{---}} в графе <tex> G </tex> есть путь (возможно, рёберно пустой) из вершины <tex> u </tex> в <tex> v </tex>,* <tex> u \underset{G}{\overset{+}{\leadsto}} v </tex> {{---}} в графе <tex> G </tex> есть рёберно непустой путь из вершины <tex> u </tex> в <tex> v </tex>.
Также введём определение транзитивного замыкания в терминах теории графов:
{{Определение
|definition=
'''Транзитивным замыканием''' (англ. ''transitive closure'') графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V | \mid i \underset{G}{\leadsto} j \right \} </tex>.
}}
Так как отношение антисимметричнои транзитивно, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>.
Докажем теорему, из которой следует алгоритм.
{{Теорема
|statement=
Пусть <tex> G^- = \left < V, E^- \right > </tex>. Тогда <tex> E^- = \left \{ k \underset{G}{\to} m \ | \ mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex>
|proof=
Докажем, что <tex> E^- \subseteq \left \{ k \underset{G}{\to} m \ | \ mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \}</tex>:
:Пусть <tex> G^- </tex> уже построен. Пусть <tex> k \underset{G^-}{\to} m </tex>. Тогда <tex> k \neq m </tex> (так как иначе удаление ребра <tex> (k, m) </tex> из <tex> E^- </tex> приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>.
:Пусть <tex> l </tex> — вершина, для которой выполняется <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>. Докажем, что <tex> k = l </tex>, от противного. Пусть <tex> k \neq l </tex>. <tex> G </tex> ацикличен, поэтому <tex> l \neq m </tex>. Поскольку <tex> G^* = (G^-)^* </tex>, верно <tex> k \underset{G^-}{\overset{+}{\leadsto}} l \wedge l \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G^- </tex> ацикличен, путь из <tex> k </tex> в <tex> l </tex> не может содержать ребра <tex> (k, m) </tex>, аналогично путь из <tex> l </tex> в <tex> m </tex> не может содержать <tex> (k, m) </tex>. Поэтому в <tex> G^- </tex> существует путь из <tex> k </tex> в <tex> m </tex>, не содержащий в себе ребро <tex> (k, m) </tex>, значит, удаление <tex> (k, m) </tex> из <tex> E^- </tex> не изменит транзитивное замыкание, что противоречит условию минимальности <tex> E^- </tex>. Поэтому <tex> \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Поскольку <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>, существует такая вершина <tex> l </tex>, что <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>, что приводит к выводу, что <tex> k \underset{G}{\to} m </tex>.
Докажем, что <tex> \left \{ k \underset{G}{\to} m \ | \ mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} \subseteq E^- </tex>:
:Предположим, что <tex> k \underset{G}{\to} m </tex> и <tex> \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Докажем, что <tex> k G^- m </tex>, от противного. Предположим, что <tex> (k, m) \notin E^- </tex>. Поскольку <tex> G </tex> ацикличен, <tex> k \neq m </tex> и поэтому <tex> k \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> (k, m) \notin E^- </tex>, существует вершина <tex> l </tex> такая, что <tex> k \underset{G^-}{\leadsto} l \wedge l \underset{G^-}{\leadsto} m </tex> и <tex> k \neq l \neq m </tex>, поэтому <tex> k \underset{G}{\overset{+}{\leadsto}} l \wedge l \underset{G}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G </tex> ацикличен, существует вершина <tex> l' \neq k </tex>, для которой выполняется <tex> k \underset{G}{\overset{+}{\leadsto}} l' \wedge l' \underset{G}{\to} m </tex>, что противоречит нашему предположению.
Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \ | \ mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> включены друг в друга, они совпадают, то есть равны.
}}
=== Псевдокод Ассимптотика=== '''function''' f(X: '''List<T>''', R: '''List<T>'''): RДля множества <tex>^- X</tex> = R '''foreach''' a '''in''' X '''foreach''' b '''in''' X '''foreach''' c '''in''' X '''if''' aRb '''and''' bRc '''and''' aRc Rколичеством элементов <tex>^- n</tex>.delete(pairалгоритм работает за <tex>\langleO(n^3)</tex>a, cтак как в каждом из трёх циклов мы пробегаемся по всем элементам множества <tex>\rangleX</tex>). ==См. также==* [[Транзитивное замыкание]]* [[Остовные деревья: определения, лемма о безопасном ребре]]
== Источники информации ==
390
правок

Навигация